Léo Bernus

Massive graviton phenomenolog

Numerical analysis

Results of a global fit Constraining the mass of the graviton with the planetary ephemeris INPOP

Journée Phyfog

Léo Bernus¹,

Agnès Fienga², Olivier Minazzoli^{3,4}, Jacques Laskar¹, Mickaël Gastineau¹, Pierre Deram²

¹ IMCCE, CNRS-UMR 8028, Paris
² GéoAzur, CNRS-UMR 7329, Valbonne
³ Centre scientifique de Monaco
⁴ Artemis, CNRS-UMR 7250, Nice

May 23, 2019

arXiv:1901.04307

Léo Bernus

Massive graviton phenomenology

Numerical analysis

Results of a global fit

1 Massive graviton phenomenology

2 Numerical analysis

3 Results of a global fit

Léo Bernus

Massive graviton phenomenology

Numerical analysis

Results of a global fit

Massive graviton phenomenology

Gravity phenomenology can be derived from particle physics : 2-spin massless *graviton*. Massless or not ?

(Review: C. de Rham, *Massive Gravity*, Living Reviews in Relativity 17, 7 (2014), arXiv:1401.4173)

Different tests of this theory:

- Dispersion relation : $E^2=p^2c^2+m_g{}^2c^4\Rightarrow$ different waveforms (arXiv:1903.04467)
- Galactic scales (Physics Letters B: 778, 325 331 (2018); 781, 220 – 226 (2018); Annals of Physics 399, 85 – 92 (2018).)
- Solar system scales : this work.

Léo Bernus

Massive graviton phenomenology

Numerical analysis

Results of a global fit

Metric tensor in weak field

- In week field and velocity, almost all massive graviton theories are summarized by a Yukawa potential.
- After expansions in $r/\lambda_g \ll 1$ and clever variable changes :

$$\begin{split} \mathrm{d}s^2 &= \left(-1 + \frac{2GM}{c^2 r} \left[1 + \frac{1}{2} \frac{r^2}{\lambda_g^2}\right]\right) c^2 \mathrm{d}t^2 \\ &+ \left(1 + \frac{2GM}{c^2 r} \left[1 + \frac{1}{2} \frac{r^2}{\lambda_g^2}\right]\right) \mathrm{d}\ell^2 \\ \lambda_g &= \frac{h}{m_g c}, \quad r = \sqrt{x^2 + y^2 + z^2}, \\ \mathrm{d}\ell^2 &= \mathrm{d}x^2 + \mathrm{d}y^2 + \mathrm{d}z^2. \end{split}$$

Léo Bernus

Massive graviton phenomenology

Numerical analysis

Results of a global fit

Geometric optics in massive gravity

 $Modified \ time \ travel:$

$$\delta(t_r - t_e) \sim \left(\frac{L}{\lambda_g}\right)^2 \times \text{Shapiro delay}$$

- Previous constrains : $\lambda_g > 10^{12}$ km.
- Solar system scale $\sim 10^9$ km in the worst case (Neptune).

 $\Rightarrow \left(\frac{L}{\lambda_g}\right)^2 < 10^{-6}$ for Neptune. Rather $< 10^{-8}$ for solar system bodies with accurate data.

 \Rightarrow term negligible, keep usual GR framework.

Léo Bernus

Massive graviton phenomenology

Numerical analysis

Results of a global fit

Planetary dynamics

Terms to be added in equations of motion:

$$\delta \frac{\mathrm{d}^2 \boldsymbol{x}_A}{\mathrm{d}t^2} = \frac{1}{2\lambda_g^2} \sum_{B \neq A} GM_B \frac{\boldsymbol{x}_A - \boldsymbol{x}_B}{|\boldsymbol{x}_A - \boldsymbol{x}_B|} + O(\lambda_g^{-3})$$

- Here, A, B = Sun, Mercury, Venus, Earth, Moon, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto.
- Other small bodies : INPOP not changed.
- Clifford Will announced a very good constraint from planetary ephemeris (CQG 35, 17LT01, 2018): $\lambda_g \geq 2.21 \times 10^{14}$ km. 10 times better than LIGO-VIRGO constraints!

Léo Bernus

Massive graviton phenomenolog

Numerical analysis

Results of a global fit

Numerical anlaysis

INPOP and planetary observations

Léo Bernus

Massive graviton phenomenolog

Numerical analysis

Results of a global fit

	Observations	Time	#	INPOP17b	INPOP17b-DE436
		Intervals		$\sigma(O-C)$	$\sigma(I-D)$
				[m]	[m]
Ì	Messenger	2011:2013.2	950	7.2	3.9
	Ody, Mex	2002:2016.4	52946	5.0	1.4
	Cassini	2004:2014	175	32.1	11.7

V. Viswanathan, A. Fienga, M. Gastineau, J. Laskar 2017, INPOP17a planetary ephemerides, scientific notes of IMCCE https://www.imcce.fr/inpop/

INPOP17b = INPOP17a + some extended data from Messenger (from Verma et al. 2016 Journal of Geophysical Research (Planets) 121, 1627–1640, or arXiv:1608.01360)

INPOP17b most important observations

Léo Bernus

Massive graviton phenomenolog

Numerical analysis

Results of a global fit

• Better are observations and physical model, better are tests of alternative theories.

References :

- V. Viswanathan, A. Fienga, O. Minazzoli, L. Bernus, J. Laskar, M. Gastineau The new lunar ephemeris INPOP17a and its application to fundamental physics MNRAS 476, 1877-1888 (2018)
- V. Viswanathan, A. Fienga, M. Gastineau, J. Laskar 2017, INPOP17a planetary ephemerides, scientific notes of IMCCE https://www.imcce.fr/inpop/

INPOP17b

Data analysis

Phyfog 2019

Léo Bernus

Massive graviton phenomenolog

Numerical analysis

Results of a global fit

- λ_g fixed, all other parameters are ajusted.
- Same fit for INPOP17b and tested ephemeris (weights, observational data, parameters ajusted).
- After 10 iterations, the fit converges.
- Importance of a global fit : correlations between λ_g and other parameters.

Phyfog 2019 Léo Bernus

Postfit versus global fit

Same order of magnitude as Will's constraint, and seems better than GW constraint! But....

Léo Bernus

Postfit versus global fit

10 times smaller !

Léo Bernus

Massive graviton phenomenolog

Numerical analysis

Results of a global fit

Pearson test for Cassini data

Tests if residuals distribution come from the same distribution function.

From reference residuals distribution, we compute optimal size of bins for modelling histogram.

- $N_i^I =$ hits in bin *i* for reference solution (INPOP17b)
- $N_i^G(\lambda_g) =$ hits in bin *i* for tested solution

$$\chi^{2}(\lambda_{g}) = \sum_{i=1}^{n} \frac{(N_{i}^{G}(\lambda_{g}) - N_{i}^{I})^{2}}{N_{i}^{I}}$$

Léo Bernus

Massive graviton phenomenolog

Numerical analysis

Results of a global fit

Pearson test for Cassini data

- For Cassini : 175 points \Rightarrow optimal number of bins = 10.
- + $\chi^2(\lambda)$ follows a 10 degrees of freedom chi square law.
- Exclusion criterion : for a given value of χ^2 , residuals come from different distribution with a probability p.

$$p = 90\% \quad \Rightarrow \quad \chi^2 \ge 15.99$$
$$p = 99.9999999\% \quad \Rightarrow \quad \chi^2 \ge 62.94$$

Léo Bernus

Numerical analysis

Results of a global fit

Pearson test with postfit analysis

Numerical analysis

Results of a global fit

Pearson test with global analysis

Léo Bernus

Massive graviton phenomenolog

Numerical analysis

Results of a global fit

• For testing a new theory, global fit is crucial!

• INPOP is a good tool for testing GR in Solar System

Result :

- 90% bound :
 - $\lambda_g > 1.83 \times 10^{13} \, \mathrm{km}$
 - $m_g < 6.76 \times 10^{-23} \, {\rm eV}/c^2$
- 99.9999999% bound :
 - $\lambda_g > 1.66 \times 10^{13} \, \mathrm{km}$
 - $m_g < 7.45 \times 10^{-23} \, \mathrm{eV}/c^2$
- Details: arXiv:1901.04307

Future perspectives, work in progress:

- Better constraint criterion based on orbit propagation
- More data and more accurate solution \Rightarrow better constraint.

Conclusion