The physics of black hole binary:

geodesics, relaxation modes and energy extraction

Laura BERNARD (LUTH – Observatoire de Paris)

Journée PhyFOG – 21 mai 2019

Based on arXiv: 1905.05204 In collaboration with: Vitor Cardoso, Taishi Ikeda, Miguel Zilhão

Laboratories de l'Univers et de ses Théories

Outline

- 1. Black hole binary
 - i. Null geodesics
 - ii. Quasinormal modes
- 2. Energy extraction
 - i. A toy model in 2+1 dimensions
 - ii. BH binary in a cavity

Introduction

- Individual black holes
 - Isolated: no-hair theorem
 - Perturbed: quasinormal modes
 - Interaction with its environment: energy extraction
- BH binaries in isolation
 - PN formalism
 - Numerical relativity

Introduction

- Individual black holes
 - Isolated: no-hair theorem
 - Perturbed: quasinormal modes
 - Interaction with its environment: energy extraction
- BH binaries in isolation
 - PN formalism
 - Numerical relativity
- Perturbed BH binaries ?
 - > Do they have characteristics ringdown modes?
 - > Do they amplify incoming low-frequency radiation?

General relativistic MHD simulations

- BH binary metric : asymptotically matched PN theory and BH perturbation theory
- GR-MHD: interaction of the individual mini-disks with the circumbinary disk

The binary spacetime

• Approximate BH binary [Mundim et al., 2014]

- The metrics
 - IZ1 & 2 : perturbed Schwarzschild BHs
 - NZ : 2PN metric
 - FZ : multipolar-PM expansion
- Asymptotic matching
 - NZ/FZ : by construction
 - IZs/NZ : parameter and coordinate transformation
- No GW emission, circular orbits

Geodesics

• Closed null geodesics

- Similar result for closed timelike geodesics
 - > more stable

Scattering and relaxation modes – the setup

- Fixed background: asymptotically matched spacetime
- Massless scalar field
 - Klein-Gordon equation $\Box \Phi(t, \vec{x}) = 0$
 - Initial spherically symmetric ingoing pulse

$$\Phi(0, \vec{x}) \equiv \Phi_0 = \frac{\sin \omega r W(r)}{r} e^{-(r-r_0)^2/\sigma^2}$$
$$\partial_t \Phi(0, \vec{x}) = \partial_r \Phi_0 + \frac{\Phi_0}{r}$$

- Initial parameters
 - Equal-mass BHs
 - BHB separation: L = 10, 20, 40 M
 - $r_0 = 100M$, $\sigma = 40,80 M$, $M\omega = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5$

Scattering and relaxation modes – results

L = 10M $r_0 = 100M$ $\sigma = 40M$ $M\omega = 0.1$

- Dominant monopolar mode: drives the dynamics
- > Excitation of multipolar modes after t = 100M
- > Tail: power-law in time $\propto t^{-7}$

Global geodesics and quasinormal modes

i. QNMs of individual BHs

Around each BH

i.

Geodesics

Global geodesics and quasinormal modes

i.

ii.

Geodesics

- Around each BH
- i. Global geodesics

 $T=1/2(2L+T_{LR})$

Global geodesics and quasinormal modes

> Depends only on mass and separation of the binary, not initial parameters

i.

ii.

Energy extraction

- Spinning BHs
 - Transfer rotational energy to bosonic fields: superradiance
 - Inside a cavity with reflecting boundaries: instability

- Gravitational slingshot
 - Transfer kinetic energy from moving planets to scattered objects

BH binary in a cavity in 3+1 dimensions

- Non-spinning BHB in a cavity
 - absorption is too large
 - timescales for energy extraction is too large
- Preliminary results:

A toy model in 2+1 dimensions

- The setup
 - A binary of two reflecting objects
 - Inside a cavity
 - In flat 2+1 dimensions
 - Massless scalar with Gaussian initial profile
- Initial parameters
 - Orbital frequency, separation and cavity size

A toy model in 2+1 dimensions

- The setup
 - A binary of two reflecting objects
 - Inside a cavity
 - In flat 2+1 dimensions
 - Massless scalar with Gaussian initial profile
- Initial parameters
 - Orbital frequency, separation and cavity size
- Results
 - Total energy increases with time
 - Only when $\omega \sim t_{LR}$

16

Concluding remarks

- Evidence of correspondence between geodesics and quasinormal modes of BH binaries
 - BHB spectroscopy in the future
- A small particle orbiting one BH could resonantly excite the global QNMs
 - > For L = 38M \longrightarrow particle at the ISCO of one BH
- Energy extraction and instability
 - Spinning BHs
 - Compact stars
 - > Is the instability relevant for astrophysical systems (i.e. during a binary lifetime) ?

Majumdar-Papapetrou spacetime

• Exact solution in GR describing two maximally charged BHs: Q = M

$$ds^{2} = -\frac{dt^{2}}{U^{2}} + U^{2} \left(d\rho^{2} + \rho^{2} d\phi^{2} + dz^{2} \right) \quad \text{with} \quad U(\rho, z) = 1 + \frac{M}{\sqrt{\rho^{2} + (z - a)^{2}}} + \frac{M}{\sqrt{\rho^{2} + (z + a)^{2}}}$$

Closed null geodesics: instable

Closed timelike geodesics: stable

