The physics of black hole binary: geodesics, relaxation modes and energy extraction

> Laura BERNARD (LUTH - Observatoire de Paris)

$$
\text { Journée PhyFOG - } 21 \text { mai } 2019
$$

Based on arXiv: 1905.05204
In collaboration with: Vitor Cardoso, Taishi Ikeda, Miguel Zilhão

Outline

1. Black hole binary
i. Null geodesics
ii. Quasinormal modes
2. Energy extraction
i. A toy model in 2+1 dimensions
ii. BH binary in a cavity

Introduction

- Individual black holes
- Isolated: no-hair theorem
- Perturbed: quasinormal modes
- Interaction with its environment: energy extraction
- BH binaries in isolation
- PN formalism
- Numerical relativity

Introduction

- Individual black holes
- Isolated: no-hair theorem
- Perturbed: quasinormal modes
- Interaction with its environment: energy extraction
- BH binaries in isolation
- PN formalism
- Numerical relativity
- Perturbed BH binaries ?
> Do they have characteristics ringdown modes?
> Do they amplify incoming low-frequency radiation?

General relativistic MHD simulations

- BH binary metric : asymptotically matched PN theory and BH perturbation theory
- GR-MHD: interaction of the individual mini-disks with the circumbinary disk

The binary spacetime

- Approximate BH binary [Mundim et al., 2014]

- The metrics
- IZ1 \& 2 : perturbed Schwarzschild BHs
- NZ : 2PN metric
- FZ : multipolar-PM expansion
- Asymptotic matching
- NZ/FZ : by construction
- IZs/NZ : parameter and coordinate transformation
- No GW emission, circular orbits

Geodesics

- Closed null geodesics

- Similar result for closed timelike geodesics
> more stable

Scattering and relaxation modes - the setup

- Fixed background: asymptotically matched spacetime
- Massless scalar field
- Klein-Gordon equation $\quad \square \Phi(t, \vec{x})=0$
- Initial spherically symmetric ingoing pulse

$$
\begin{aligned}
\Phi(0, \vec{x}) & \equiv \Phi_{0}=\frac{\sin \omega r W(r)}{r} e^{-\left(r-r_{0}\right)^{2} / \sigma^{2}} \\
\partial_{t} \Phi(0, \vec{x}) & =\partial_{r} \Phi_{0}+\frac{\Phi_{0}}{r}
\end{aligned}
$$

- Initial parameters
- Equal-mass BHs
- BHB separation: $L=10,20,40 \mathrm{M}$
- $r_{0}=100 M, \sigma=40,80 M, M \omega=0.01,0.02,0.05,0.1,0.2,0.5$

Scattering and relaxation modes - results

$$
\begin{gathered}
L=10 M \\
r_{0}=100 M \\
\sigma=40 M \\
M \omega=0.1
\end{gathered}
$$

> Dominant monopolar mode: drives the dynamics
> Excitation of multipolar modes after $t=100 \mathrm{M}$
> Tail: power-law in time $\propto t^{-7}$

Global geodesics and quasinormal modes

Damped sinusoids

Geodesics
\longleftrightarrow i. Around each BH

Global geodesics and quasinormal modes

Damped sinusoids

Geodesics
i. QNMs of individual BHs
ii. Global QNMs: period $T=L+8 M(\pm 20 \%)$

$$
\begin{array}{ll}
\longleftrightarrow & \begin{array}{l}
\text { i.. Around each BH } \\
\longleftrightarrow
\end{array} \\
& \text { ii. } \begin{array}{c}
\text { Global geodesics } \\
\\
\\
\\
\\
\\
\\
\end{array}=1 / 2\left(2 L+T_{L R}\right)
\end{array}
$$

Global geodesics and quasinormal modes

Damped sinusoids

Geodesics

i. QNMs of individual BHs
ii. Global QNMs: period $T=L+8 M(\pm 20 \%)$ \longleftrightarrow i. Around each BH \longleftrightarrow ii. Global geodesics

$$
T=1 / 2\left(2 L+T_{L R}\right)
$$

$>$ Depends only on mass and separation of the binary, not initial parameters

Energy extraction

- Spinning BHs
- Transfer rotational energy to bosonic fields: superradiance
- Inside a cavity with reflecting boundaries: instability

- Gravitational slingshot
- Transfer kinetic energy from moving planets to scattered objects

BH binary in a cavity in 3+1 dimensions

- Non-spinning BHB in a cavity
- absorption is too large
- timescales for energy extraction is too large
- Preliminary results:
- Less absorption for larger separation
- Less absorption for vectors
- A way out:
- Spinning BHB
- Compact stars

Scalar in cavity with BBH L=20M

A toy model in $2+1$ dimensions

- The setup
- A binary of two reflecting objects
- Inside a cavity
- In flat 2+1 dimensions
- Massless scalar with Gaussian initial profile
- Initial parameters
- Orbital frequency, separation and cavity size

A toy model in 2+1 dimensions

- The setup
- A binary of two reflecting objects
- Inside a cavity
- In flat 2+1 dimensions
- Massless scalar with Gaussian initial profile
- Initial parameters
- Orbital frequency, separation and cavity size
- Results
- Total energy increases with time
- Only when $\omega \sim t_{L R}$

Total energy

Concluding remarks

- Evidence of correspondence between geodesics and quasinormal modes of BH binaries
> BHB spectroscopy in the future
- A small particle orbiting one BH could resonantly excite the global QNMs
$>$ For $L=38 \mathrm{M} \longrightarrow$ particle at the ISCO of one BH
- Energy extraction and instability
> Spinning BHs
$>$ Compact stars
> Is the instability relevant for astrophysical systems (i.e. during a binary lifetime) ?

Majumdar-Papapetrou spacetime

- Exact solution in GR describing two maximally charged BHs: $Q=M$

$$
d s^{2}=-\frac{d t^{2}}{U^{2}}+U^{2}\left(d \rho^{2}+\rho^{2} d \phi^{2}+d z^{2}\right) \quad \text { with } \quad U(\rho, z)=1+\frac{M}{\sqrt{\rho^{2}+(z-a)^{2}}}+\frac{M}{\sqrt{\rho^{2}+(z+a)^{2}}}
$$

- Closed null geodesics: instable

- Closed timelike geodesics: stable

