ACES-PHARAO test of the gravitational redshift : refined estimation of the expected uncertainty

<u>E. Savalle</u>, C. Guerlin, F. Meynadier, P. Delva, C. Le Poncin-Lafitte, P. Laurent, P. Wolf

SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE, 61 avenue de l' Observatoire 75014 Paris Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, UPMC-Sorbonne Universités, Collège de France

June 8, 2018

ACES-PHARAO test of the gravitational redshift

- ACES-PHARAO mission
- Clocks desynchronization
- Equivalence principle
- Clocks gravitational redshift

Theoretical background

- Experimental data
- Experimental data

3 Results

- Analysis methods
- Phase or frequency model
- Number of stations
- ISS orbit deterioration

Conclusion

ACES-PHARAO test of the gravitational redshift

- ACES-PHARAO mission
- Clocks desynchronization
- Equivalence principle
- Clocks gravitational redshift

Theoretical background

- Experimental data
- Experimental data

B) Results

- Analysis methods
- Phase or frequency model
- Number of stations
- ISS orbit deterioration
- Conclusion

ACES-PHARAO mission

Objectives

Demonstrate ACES high performance and the ability to achieve high stability on space-ground time and frequency transfer. Perform tests of fundamental physics at unprecedented accuracy

Launch date Early 2020 Partners CNES, ESA, industries and laboratories

Duration 18 months up to 3 years

Ph Laurent et al. 2015. The ACES/PHARAO space mission

Clocks desynchronization

Doppler effect	$v < c$ and $v_0 = 0$
$\nu_i = \nu_0 \frac{1 + \frac{\nu_i}{c}}{1 + \frac{\nu_O}{c}} \tag{1}$	$\nu_i = \nu_0 \left(1 + \frac{v_i}{c} \right) \tag{2}$

Frequency difference		Desynchronization	
$\frac{\Delta\nu}{\nu} = \frac{\nu_2 - \nu_1}{\nu_0} = \frac{\Delta v}{c}$	(3)	$rac{\Delta u}{ u} \simeq rac{a \Delta t}{c} = rac{a L}{c^2}$	(4)

Equivalence principle

Two people drop an object, the first one is in a gravitational field (\vec{g}) , the other is in a rocket with a constant acceleration $(\vec{a} = -\vec{g})$.

Equivalence principle

- we [...] assume the complete physical equivalence of a gravitational field and a corresponding acceleration of the reference system. - Einstein, 1907

Equivalence principle decomposition :

- Universality of Free Fall
- Lorentz invariance
- Local position invariance

Desynchronization : acceleration

$$\frac{\Delta\nu}{\nu} \simeq \frac{\mathsf{aL}}{\mathsf{c}^2}$$

ACES-PHARAO test of the gravitational redshift ACES-PHARAO mission Clocks desynchronization Equivalence principle

Clocks gravitational redshift

Theoretical background

- Experimental data
- Experimental data

Results

- Analysis methods
- Phase or frequency model
- Number of stations
- ISS orbit deterioration
- Conclusion

Test of the gravitational redshift : experimental data

Desynchronization model

$$\Delta \tau(t) = \Delta \tau_0 + \int_{t_0}^t \frac{V_{ground}^2 - V_{space}^2}{2c^2} dt' + \int_{t_0}^t \frac{U_{ground} - U_{space}}{c^2} dt' + \left[\alpha \right] \int_{t_0}^t \frac{U_{ground} - U_{space}}{c^2} dt'$$
(6)

Gravity Probe A	Great Experiment
$\sigma_lpha=2 imes10^{-4}$	$\sigma_{lpha} = \text{low} 10^{-5}$
R. F. C. Vessot et al. 1979	P. Delva et al. (2018)

Test of the gravitational redshift : model

Fitted model

$$Y(t) = \Delta \tau(t) - \int_{t_0}^t \frac{V_{ground}^2 - V_{space}^2}{2c^2} dt' - \int_{t_0}^t \frac{U_{ground} - U_{space}}{c^2} dt'$$
$$= \Delta \tau_0 + \alpha \int_{t_0}^t \frac{U_{ground} - U_{space}}{c^2} dt'$$
$$= \begin{pmatrix} 1 & \vdots & \vdots & \int_{t_0}^{t_1} \frac{\Delta U}{c^2} dt' \\ \vdots & 1 & \vdots & \vdots \\ \vdots & \vdots & \vdots & \int_{t_0}^{t_n} \frac{\Delta U}{c^2} dt' \end{pmatrix} \begin{pmatrix} \Delta \tau_0^{OPMT} \\ \Delta \tau_0^{PTBB} \\ \vdots \\ \alpha \end{pmatrix}$$
$$= AX$$
$$(7)$$

ACES-PHARAO test of the gravitational redshift • ACES-PHARAO mission • Clocks desynchronization • Equivalence principle • Clocks gravitational redshift

Theoretical background

- Experimental data
- Experimental data

Results

- Analysis methods
- Phase or frequency model
- Number of stations
- ISS orbit deterioration

Conclusion

Method	Least squares Monte Carlo (LSMC)	Generalized least squares (GLS)	
Model	Y = Ax	WY = WAx with W the	
		inverse noise covariance matrix	
Solution	$x = (A^T A)^{-1} A^T Y$	$x = (A^T W A)^{-1} A^T W Y$	
Uncertainty	$\sigma_{LS} = \sigma_{noise} (A^T A)^{-1/2}$	$\sigma_{GLS} = (A^{T} WA)^{-1/2}$	
How to get σ_{α} ?	Standard deviation of a set of N _{MC} least squares simulation	σ_{GLS}	
CPU (time)	N _{MC} linear dependance	Instantaneous	
RAM (memory)	Data length : n	Storing and inverting W : n ²	
Prerequisites	General noise characteristics	Good knowledge of W	
Validity area		inversion of a $n \times n$ covariance matrix	
		$\Rightarrow n < 10.000$	
Uncertainty	Theoretically higher than GLS	Cramér-Rao bound : best estimator	
Summary	No-Brainer is Simpler : Computer efficient implementation but leads to higher uncertainty	Brainer is Better : Best estimator but requires to know the covariance matrix	

Results

 $\sigma_{\rm LSMC}\simeq\sigma_{\rm GLS}$

(8)

Phase or frequency model

Table: Uncertainty of α : phase vs frequency

Number of stations

	1 station	2 stations	Full network
σ_{lpha}	$4.2 imes10^{-6}$	$3.7 imes10^{-6}$	$3.1 imes10^{-6}$

Table: Uncertainty of α : number of stations

ISS orbit deterioration

Orbit file

OF = POD +	-k(POD -	OD)
------------	----------	-----

k =	0	1	10 ³	10 ⁴
Orbit error		1 M	1 KM	10 KM
α	$2 imes 10^{-6}$	$2 imes 10^{-6}$	$-1 imes 10^{-6}$	$-3 imes 10^{-5}$
σ_{lpha}	$4 imes 10^{-6}$	$4 imes 10^{-6}$	$4 imes 10^{-6}$	$4 imes 10^{-6}$
SIGNIFICANT	False	False	False	True

Table: α : ISS orbit deterioration

ACES-PHARAO test of the gravitational redshift ACES-PHARAO mission Clocks desynchronization Equivalence principle Clocks gravitational redshift

Theoretical background

- Experimental data
- Experimental data

B) Results

- Analysis methods
- Phase or frequency model
- Number of stations
- ISS orbit deterioration

Conclusion

Analysis methods

We will use the most efficient method (LSMC) rather than the best possible estimator (GLS).

Number of stations

Using one station or the full network leads to (almost) the same uncertainty.

Phase or frequency analysis

Due to the mission specificity, we will use the phase model over the frequency.

ISS orbit deterioration

A 100m error on the ISS orbit will not affect the gravitational redshift test.

Final expected uncertainty

We will achieve :

$$\sigma_{\alpha} = 3 \times 10^{-6}$$

(11)

Hypothesis A body's mass is modified by the energy needed to keep its structure and composition.

Modified mass

$$m = m_0 - \delta m_I \frac{V^2}{2c^2} - \delta m_P \frac{U}{c^2}$$

with δm_X modificiations to the normal mass m_0 .

The energy becomes :

Modified energy

$$E = m_0 c^2 + \frac{1}{2} m_0 \left(1 + \frac{\delta m_I}{m_0} \right) V^2 - m_0 \left(1 + \frac{\delta m_P}{m_0} \right) U$$
(13)

(12)

Two levels system, $\delta m_I = 0$

Modified metric

$$\frac{\nu}{\nu_0} = \frac{d\tau}{dt} = 1 - \frac{V^2}{2c^2} - \frac{U}{c^2} - \alpha_P \frac{U}{c^2}$$
(14)

Schwartzchild metric and Doppler effect

$$\frac{d\tau}{dt} = 1 - \frac{V^2}{2c^2} - \frac{U}{c^2}$$
(15)

ISS orbit deterioration

