Backreaction of the infrared modes of scalar fields on de Sitter geometry

Gabriel Moreau, Julien Serreau

APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France.

Framework

Flow in the infrared limit

Results

Why de Sitter ?

- It is maximally symmetric
- It is relevant for inflation

For scalar field in dS,

- Large gravitational effects in the infrared (superhorizon scales)
- Infrared modes are amplified
- Interactions cannot be treated perturbatively

Framework

Flow in the infrared limit

Results

The theory is described by an **effective action** $\Gamma[\varphi, g]$, the Legendre transform of $\mathscr{W}[j, g]$ defined as

$$e^{i\mathscr{W}[j,g]} = \int \mathscr{D}\hat{\varphi}e^{iS[\hat{\varphi},g]+i\int j\hat{\varphi}}, \quad \Gamma[\varphi,g] = \mathscr{W}[j,g]-j\cdot\varphi$$

with $g_{\mu\nu}$ the background metric. The action *S* will be typically an O(N) theory with φ^4 interaction.

Non perturbative renormalization group

A. Kaya '13; M. Guilleux, J. Serreau '15 Add a regulator

$$i\Delta S_{\kappa}[\hat{\varphi},g] = i \int_{x,y} R_{\kappa}(x,y) \hat{\varphi}(x) \hat{\varphi}(y).$$

And define an effective action which interpolates between S and Γ

$$\Gamma_{\kappa}[\boldsymbol{\varphi},g] = \mathscr{W}_{\kappa}[j,g] - j \cdot \boldsymbol{\varphi} - \Delta S_{\kappa}[\boldsymbol{\varphi},g]$$

The **physical values** for *g* and φ are simultaneously determined at a scale κ through

$$\frac{\delta\Gamma_{\kappa}}{\delta\varphi} = 0, \quad \frac{\delta\Gamma_{\kappa}}{\delta g^{\mu\nu}} = 0$$

which we evaluate at constant values of φ .

Framework

Non perturbative renormalization group 2

We want to solve the flow of Γ_{κ} : it obeys the **Wetterich equation**

$$\dot{\Gamma}_{\kappa} = \frac{1}{2} \operatorname{tr} \dot{R}_{\kappa} (\Gamma_{\kappa}^{(2)} + R_{\kappa})^{-1}.$$

This equation is regulated both in the infrared and the ultraviolet (f_{κ} is a typical integrand in the r.h.s.)

$$\frac{\delta\Gamma_{\kappa}}{\delta g^{\mu\nu}} = 0 \qquad \Rightarrow \qquad G^{\kappa}_{\mu\nu} = \left\langle T^{\kappa}_{\mu\nu} \right\rangle$$

- Without regulator, $\langle T_{\mu\nu} \rangle$ has de Sitter symmetries by construction.
- The regulator breaks some of them, but still gives a FLRW solution.
- The terms which breaks de Sitter group are UV dominated quantities which have practically no flow in the IR.
- Projecting on a de Sitter metric along the entire flow gives a good approximation.

The flow of the metric is reduced to the flow of its Hubble constant.

Framework

Flow in the infrared limit

Results

We compute the flow equation in the LPA by taking the ansatz

$$\Gamma_{\tilde{\kappa}}[\boldsymbol{\varphi},h] = -\int \mathrm{d}^{D}x \sqrt{-\tilde{g}} \left(\frac{Z(h)}{2} \tilde{g}_{\mu\nu} \partial^{\mu} \varphi_{a} \partial^{\nu} \varphi_{a} + N \tilde{U}_{\tilde{\kappa}}(\varphi_{a},h) \right)$$

with \tilde{g} the dS metric with h = 1. The *h* factors are hidden in *Z* and \tilde{U} .

It amounts to **discard higher derivative interactions**, which are expected to be subdominant in the infrared regime ($\kappa \ll h$). For constant φ , we compute the flow of *U*, the effective potential.

In the *p*-representation,

$$R^{ab}_{\tilde{\kappa}}(p,p';h) = \delta^{ab} \frac{\delta(p-p')}{p^2} Z(h) \left(\tilde{\kappa}^2 - p^2\right) \theta(\tilde{\kappa}^2 - p^2).$$

Then

$$N\tilde{\tilde{U}}_{\tilde{\kappa}} = \beta(m_{l,\tilde{\kappa}}^2,\tilde{\kappa}) + (N-1)\beta(m_{t,\tilde{\kappa}}^2,\tilde{\kappa}).$$

Under the small curvature of the potential, in the infrared regime,

$$h^D eta(m^2,\kappa) = rac{h^D}{\Omega_{D+1}} rac{\kappa^2}{\kappa^2 + m^2}$$

M. Guilleux, J. Serreau '15

Zero dimensional theory

The solution is a zero dimensional theory

$$e^{h^{-D}\Omega_{D+1}\mathscr{W}_{\kappa}(j,h)} = \int \mathrm{d}^{N}\hat{\varphi} \, e^{-h^{-D}\Omega_{D+1}\left(V_{in}(\phi,h) + \frac{\kappa^{2}}{2}\phi^{2} - j\cdot\phi\right)}$$

with the initial conditions V_{in} that match the microscopic potential,

• It coincides with the equilibrium probability distribution in the stochastic formalism

A. A. Starobinsky, J. Yokoyama '94

• It is the effective theory for the scalar field averaged over a Hubble patch at constant values of the field

Flow of the physical quantities

Taking as initial conditions

$$V_{in}(\hat{\boldsymbol{\varphi}},h) = N\left(\alpha - \frac{\beta}{2}h^2\right) + \frac{m^2 + \xi h^2}{2}\hat{\varphi}_a^2 + \frac{\lambda}{8N}(\hat{\varphi}_a^2)^2.$$

The minimization of the effective action gives

$$\begin{cases} \varphi_{\kappa} = \langle \hat{\varphi} \rangle \\ h_{\kappa}^{2} = \frac{4N\alpha + 2(m^{2} + \kappa^{2}) \langle \hat{\varphi}^{2} \rangle + \frac{\lambda}{2N} \langle \hat{\varphi}^{4} \rangle - 2\kappa^{2}\varphi^{2}}{N\beta - \xi \langle \hat{\varphi}^{2} \rangle} \end{cases}$$

The expectation values are to be computed in the zero dimensional theory.

A summary of our approximations so far :

• Semiclassical regime :
$$\frac{h_{\kappa}^2}{\beta} \ll 1$$

• Infrared regime (\rightarrow LPA) : $\kappa \ll h_{\kappa}$

• Small curvature :
$$\frac{m_{t/l,\kappa}^2}{h_{\kappa}^2} \ll 1$$

Framework

Flow in the infrared limit

Results

We look at cases where we can do analytical computations. For a Gaussian ($\lambda = 0$) theory, $\varphi_{\kappa} = 0$ and

$$4\alpha - \beta h_{\kappa}^2 + \frac{2h_{\kappa}^4}{\Omega} - \frac{\xi h_{\kappa}^6}{\Omega \mu (h_{\kappa})^2} = 0$$

with $\mu(h)^2 = m^2 + \xi h^2 + \kappa^2$.

- For minimally coupled fields ($\xi = 0$), h_{κ} has no flow.
- Depending on the sign of ξ , the Hubble constant is renormalized either positively or negatively.

Massless case

- The superhorizon modes of the massless scalar fields are greatly enhanced, drawing energy from the gravitational field
- The dynamical generation of a mass screens this effect, leading to a finite renormalization of the Hubble constant
- the asymptotic values can be computed exactly and only depend on α and β

The massless and Gaussian cases forbid **symmetry breaking**. We can study it in the large N regime, having a (would-be) broken phase in the beginning of the flow.

The symmetry is always restored at a finite value of κ .

$$4\alpha - \beta h_{\kappa}^2 + 2\frac{\bar{z} - \mu^2}{\lambda} (\bar{z} + m^2 + \kappa^2) - 4\kappa^2 \rho_{\kappa} = 0, \quad \rho = \frac{\varphi_a^2}{2N}$$
$$\bar{z} = m_{t,\kappa}^2 + \kappa^2 = \frac{\mu^2 + \lambda\rho}{2} + \sqrt{\left(\frac{\mu^2 + \lambda\rho}{2}\right)^2 + \frac{\lambda h^4}{2\Omega_{D+1}}}$$

Large N : (would-be) broken phase

Large *N* : symmetric phase

Framework

Flow in the infrared limit

Results

The backreaction we studied is influenced by several phenomena :

- The mass generation screens the renormalization of the Hubble parameter
- Non minimal coupling between the scalar fields and gravitational field has a non trivial effect on the flow
- Goldstone modes do not contribute

Perspectives :

- Going beyond the local potential approximation
- Work in a more general FLRW spacetime