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Motivations

Why de Sitter ?
• It is maximally symmetric
• It is relevant for inflation

For scalar field in dS,
• Large gravitational effects in the infrared (superhorizon scales)
• Infrared modes are amplified
• Interactions cannot be treated perturbatively
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Semiclassical approach

The theory is described by an effective action Γ[ϕ,g], the Legendre
transform of W [j,g] defined as

eiW [j,g] =
∫

D ϕ̂eiS[ϕ̂,g]+i
∫

jϕ̂ , Γ[ϕ,g] = W [j,g]− j ·ϕ

with gµν the background metric.
The action S will be typically an O(N) theory with ϕ4 interaction.
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Non perturbative renormalization group

A. Kaya ’13; M. Guilleux, J. Serreau ’15
Add a regulator

i∆Sκ [ϕ̂,g] = i
∫

x,y
Rκ(x,y)ϕ̂(x)ϕ̂(y).

And define an effective action which interpolates between S and Γ

Γκ [ϕ,g] = Wκ [j,g]− j ·ϕ−∆Sκ [ϕ,g]

The physical values for g and ϕ are simultaneously determined at a
scale κ through

δΓκ

δϕ
= 0,

δΓκ

δgµν
= 0

which we evaluate at constant values of ϕ .
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Non perturbative renormalization group 2

We want to solve the flow of Γκ : it obeys the Wetterich equation

Γ̇κ =
1
2

tr Ṙκ(Γ
(2)
κ +Rκ)

−1.

This equation is regulated both in the infrared and the ultraviolet (fκ is
a typical integrand in the r.h.s.)

p

Rκ (p)

p

fκ (p)
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De Sitter Background

δΓκ

δgµν
= 0 ⇒ Gκ

µν =
〈
Tκ

µν

〉
• Without regulator,

〈
Tµν

〉
has de Sitter symmetries by

construction.
• The regulator breaks some of them, but still gives a FLRW

solution.
• The terms which breaks de Sitter group are UV dominated

quantities which have practically no flow in the IR.
• Projecting on a de Sitter metric along the entire flow gives a

good approximation.

The flow of the metric is reduced to the flow of its Hubble constant.
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Local potential approximation (LPA)

We compute the flow equation in the LPA by taking the ansatz

Γκ̃ [ϕ,h] =−
∫

dDx
√
−g̃
(

Z(h)
2

g̃µν∂
µ

ϕa∂
ν
ϕa +NŨκ̃(ϕa,h)

)
with g̃ the dS metric with h = 1. The h factors are hidden in Z and Ũ.

It amounts to discard higher derivative interactions, which are
expected to be subdominant in the infrared regime (κ � h). For
constant ϕ , we compute the flow of U, the effective potential.
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Flow equation

In the p-representation,

Rab
κ̃ (p,p′;h) = δ

ab δ (p−p′)
p2 Z(h)

(
κ̃

2−p2)
θ(κ̃2−p2).

Then
N ˙̃Uκ̃ = β (m2

l,κ̃ , κ̃)+(N−1)β (m2
t,κ̃ , κ̃).

Under the small curvature of the potential, in the infrared regime,

hD
β (m2,κ) =

hD

ΩD+1

κ2

κ2 +m2

M. Guilleux, J. Serreau ’15
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Zero dimensional theory

The solution is a zero dimensional theory

eh−DΩD+1Wκ (j,h) =
∫

dN
ϕ̂ e−h−DΩD+1

(
Vin(ϕ̂,h)+ κ2

2 ϕ̂2−j·ϕ̂
)

with the initial conditions Vin that match the microscopic potential,

• It coincides with the equilibrium probability distribution in the
stochastic formalism
A. A. Starobinsky, J. Yokoyama ’94

• It is the effective theory for the scalar field averaged over a
Hubble patch at constant values of the field
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Flow of the physical quantities

Taking as initial conditions

Vin(ϕ̂,h) = N
(

α− β

2
h2
)
+

m2 +ξ h2

2
ϕ̂

2
a +

λ

8N
(ϕ̂2

a )
2.

The minimization of the effective action gives
ϕκ = 〈ϕ̂〉

h2
κ =

4Nα +2
(
m2 +κ2

)〈
ϕ̂2
〉
+ λ

2N

〈
ϕ̂4
〉
−2κ2ϕ2

Nβ −ξ 〈ϕ̂2〉

The expectation values are to be computed in the zero dimensional
theory.
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Approximations

A summary of our approximations so far :

• Semiclassical regime :
h2

κ

β
� 1

• Infrared regime (→ LPA) : κ � hκ

• Small curvature :
m2

t/l,κ

h2
κ

� 1
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Gaussian theory

We look at cases where we can do analytical computations.
For a Gaussian (λ = 0) theory, ϕκ = 0 and

4α−βh2
κ +

2h4
κ

Ω
− ξ h6

κ

Ωµ(hκ)2 = 0

with µ(h)2 = m2 +ξ h2 +κ2.

• For minimally coupled fields (ξ = 0), hκ has no flow.
• Depending on the sign of ξ , the Hubble constant is renormalized

either positively or negatively.
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Massless case

m = ξ = 0
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Massless case

h2
∞ = βΩ

4

(
1−
√

1− 32α

β 2Ω

)
h2

0 =
βΩ

4

(
1−
√

1− 16α

β 2Ω

)
0.001 0.010 0.100 1

κ
0.406

0.408

0.410

0.412

hκ
2

N=1

N→∞

• The superhorizon modes of the massless scalar fields are greatly
enhanced, drawing energy from the gravitational field
• The dynamical generation of a mass screens this effect, leading

to a finite renormalization of the Hubble constant
• the asymptotic values can be computed exactly and only depend

on α and β

Results Backreaction of the infrared modes of scalar fields on de Sitter geometry 14



Large N case

The massless and Gaussian cases forbid symmetry breaking. We can
study it in the large N regime, having a (would-be) broken phase in
the beginning of the flow.
The symmetry is always restored at a finite value of κ .

4α−βh2
κ +2

z̄−µ2

λ

(
z̄+m2 +κ

2)−4κ
2
ρκ = 0, ρ =

ϕ2
a

2N

z̄ = m2
t,κ +κ

2 =
µ2 +λρ

2
+

√(
µ2 +λρ

2

)2

+
λh4

2ΩD+1

Results Backreaction of the infrared modes of scalar fields on de Sitter geometry 15



Large N : (would-be) broken phase

The Goldstone bosons do not renormalize hκ
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Large N : symmetric phase

Interplay between λ and ξ < 0
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Conclusion

The backreaction we studied is influenced by several phenomena :
• The mass generation screens the renormalization of the Hubble

parameter
• Non minimal coupling between the scalar fields and gravitational

field has a non trivial effect on the flow
• Goldstone modes do not contribute

Perspectives :
• Going beyond the local potential approximation
• Work in a more general FLRW spacetime
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