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The time evolution of P (or f ) can be measured
with a very high precision

3 / 16 Journée GPhys 2017 Meudon - June 19, 2017



Introduction
Simulations of pulsar glitches in GR

Conclusion

Observations
Vortex-mediated glitch theory

The glitch phenomenon

Kaspi & Gavriil (2003)

4 / 16 Journée GPhys 2017 Meudon - June 19, 2017



Introduction
Simulations of pulsar glitches in GR

Conclusion

Observations
Vortex-mediated glitch theory

The glitch phenomenon

Kaspi & Gavriil (2003)

4 / 16 Journée GPhys 2017 Meudon - June 19, 2017



Introduction
Simulations of pulsar glitches in GR

Conclusion

Observations
Vortex-mediated glitch theory

The glitch phenomenon

Wong, Backer & Lyne (2001)

amplitude:

∆Ω/Ω ∼ 10−11 − 10−5

short rise time:

τr < 30 s L99 Vela

exponential relaxation on
several days or months.
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The glitch phenomenon

Wong, Backer & Lyne (2001)

amplitude:

∆Ω/Ω ∼ 10−11 − 10−5

short rise time:

τr < 30 s L99 Vela

exponential relaxation on
several days or months.

→ glitch = manifestation of an internal process

Angular momentum transfer between two fluids 99K superfluidity
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Superfluidity in neutron stars

Superfluid properties:

null viscosity,

angular momentum carried by
quantized vortex lines.

Madison et al. (2000)

Theoretical predictions

Critical temperature:

Tmax
c ' 109 − 1010 K

99K superfluid neutrons in the core
and in the inner crust

Observational evidence

Long relaxation time scales in
pulsar glitches,

Fast cooling of a young
neutron star in Cassiopeia A, ...
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Vortex-mediated glitch theory Anderson & Itoh (1975)

Two-fluid model

Charged particles:

Ωp = Ω ↔ pulsar

Neutron superfluid:

Ωn & Ωp
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Key assumption:

→ vortices can pin to nuclei in the crust.
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Once a critical lag δΩ = Ωn −Ωp is reached, some vortices get unpinned
and are allowed to move radially.

99K angular momentum transfer between the fluids = glitch!

6 / 16 Journée GPhys 2017 Meudon - June 19, 2017



Introduction
Simulations of pulsar glitches in GR

Conclusion

Observations
Vortex-mediated glitch theory

This work

Question:

What is the impact of general relativity on the global dynamics
of superfluid neutron stars during a glitch spin-up ?

→ fundamental hypothesis:

τr � τh ∼ (G ρ̄)1/2 ' 0.1 ms

a glitch event can be well described by a quasi-stationary
sequence of equilibrium configurations
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Realistic equilibrium configurations
Dynamics of giant glitches

Assumptions & Ingredients Prix et al. (2005) & Sourie et al. (2016)

Equilibrium configurations:

I uniform composition: n, p, e−

   the crust is not considered,

I stationary & axisymmetric
spacetime + isolated star,

I rigid-body rotation:
   Ωn et Ωp = const,

I T � TF , no magnetic field,

I dissipative effects are neglected.

Equations of state:

Polytropic EoSs,

Density-dependent RMF
models (DDH & DDHδ).
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Angular momentum transfer Langlois et al. (1998)

Ωn − Ωp = δΩ0    the dynamics is
governed by mutual friction forces

Γmf = −B̄ × κ× (Ωn − Ωp)
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Angular momentum transfer Langlois et al. (1998)

Ωn − Ωp = δΩ0    the dynamics is
governed by mutual friction forces

Assuming straight vortices, the mutual friction moment considered reads

Γmf = −B̄ × κ× (Ωn − Ωp)

mean mutual
friction parameter
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Realistic equilibrium configurations
Dynamics of giant glitches

Angular momentum transfer Langlois et al. (1998)

Ωn − Ωp = δΩ0    the dynamics is
governed by mutual friction forces

Assuming straight vortices, the mutual friction moment considered reads

Γmf = −B̄ × κ× (Ωn − Ωp)

some prefactor
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Time evolution

{
J̇n = + Γmf,

J̇p = − Γmf.
Computation of Ωn(t) & Ωp(t)

profiles from Ωn,0 > Ωp,0

∆Ω/Ω = 10−6, Ωf
n = Ωf

p = 2π × 11.19 Hz, MG = 1.4 M� & B̄ = 10−4
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Influence of general relativity on τr
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I polytropic EoSs

I compactness parameter:

Ξ =
G MG

Rc,eqc2

NB: for NSs, Ξ ' 0.2

I these relative differences
also depend on Ω
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Conclusion & perspectives

Relativistic corrections on the spin-up time: ∼ 50%,

↪→ should be included in a quantitative model of glitches.

Future work:

I Improve our models to include the crust
and to consider local glitch events,

I Compare with future accurate observations
of glitches.
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P − Ṗ diagram
ATNF Pulsar Database ; Manchester et al., Astron. Journal, 2005
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18 / 16 Journée GPhys 2017 Meudon - June 19, 2017



Introduction
Simulations of pulsar glitches in GR

Conclusion

Distinct glitching behaviors

Wang et al., Ap&SS, 2012

quasi-periodic giant glitches with
a very narrow spread in size

18 / 16 Journée GPhys 2017 Meudon - June 19, 2017



Introduction
Simulations of pulsar glitches in GR

Conclusion

Distinct glitching behaviors

Wang et al., Ap&SS, 2012

quasi-periodic giant glitches with
a very narrow spread in size

glitches of various sizes at
random intervals of time

18 / 16 Journée GPhys 2017 Meudon - June 19, 2017



Introduction
Simulations of pulsar glitches in GR

Conclusion

Distinct glitching behaviors

Wang et al., Ap&SS, 2012

quasi-periodic giant glitches with
a very narrow spread in size

glitches of various sizes at
random intervals of time

Different models of glitches Haskell & Melatos, IJMPD, 2015

I Rearrangement of the moment of inertia 99K crustquakes,
I Angular momentum transfer between two fluids 99K superfluidity.
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Spacetime metric
Bonazzola, Gourgoulhon, Salgado & Marck, A&A, 1993

Rotating neutron stars, at equilibrium, described by (E , g):

asymptotically flat: g → η at spatial infinity (r → +∞),

stationary & axisymmetric: ∂gαβ
∂t =

∂gαβ
∂ϕ = 0,

circular: perfect fluids ⇒ purely circular motion around the rotation
axis with Ωn, Ωp (+ rigid rotation).

Spacetime metric in quasi-isotropic coordinates:

gαβ dxα dxβ = −N2 dt2 + A2(dr2 + r2 dθ2) + B2r2 sin2 θ(dϕ− ω dt)2

At spatial infinity

N,A,B → 1 & ω → 0
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Relativistic two-fluid hydrodynamics
Carter, "Covariant theory of conductivity in ideal fluid or solid media", 1989 & Carter & Langlois, Nuc. Phys. B, 1998

System = two perfect fluids:
superfluid neutrons → ~nn = nn~un,
protons & electrons → ~np = np~up.

Energy-momentum tensor

Tαβ = nnαpn
β + npαpp

β + Ψgαβ
↪→ conjugate momenta

Entrainment matrix:{
pn
α = Knnnn

α +Knpnp
α

pp
α = Kpnnn

α +Kppnp
α

99K entrainment effect

Equation of state

E(nn, np,∆
2)
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Neutron stars interior
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Equations of state

Relativistic Mean-Field Theory:

strong interaction between nucleons ⇔ exchange of effective mesons
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MG = MB + Ebind,
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Tabulated EoS
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Entrainment effects

Dynamical effective mass:

3~pX = m∗X
3~uX

→ in the rest frame of the second fluid.

Zero-velocity frame:

special relativity

m∗X = µX ×
(
1− ε∗X

)
entrainment
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3+1 formalism

Foliation of the spacetime (E , g) by
(Σt)t∈R, with unit normal ~n

Eulerian observer On : 4-velocity = ~n

lapse function N : ~n = −N ~∇t,
shift vector ~β : ~∂t = N~n + ~β.

3+1 metric:

gαβ dxα dxβ = −N2 dt2 + γij
(
dx i + βi dt

) (
dx j + βj dt

)
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Numerical procedure

 

Paramètres d’entrée : 

 une EOS 

   
       

 
 

           

Initialisation : 

         et             

         

   
         

    
  

    

    

Convergence threshold

|H i
k+1(r , θ)− H i

k(r , θ)| < ε

At each iteration

For given values of (µn, µp,∆2),
we compute:
1. Ψ, nn, np and α from the EoS
2. The source terms E , pϕ, S i

i ,
3. Einstein Equations are solved,
4. Kinetic terms Ui et Γi,
5. Computation of H i

k+1.
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Density profiles

MG = 1.4 M�, Ωn/2π = Ωp/2π = 716 Hz
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Vorticity

Superfluid vorticity

wµν = ∇µpn
ν −∇νpn

µ 99K $n =
√

wµνwµν
2
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Angular momenta

Axisymmetry ↔ ~χ

Komar definition:

JK = −
´

Σt
T (~n, ~χ)︸ ︷︷ ︸
−pϕ

d3V

Eulerian observer ~n (3+1)

Angular momentum of each fluid
Langlois, Sedrakian & Carter, MNRAS, 1998

pϕ = Γnnnpn
ϕ︸ ︷︷ ︸

jnϕ

+ Γpnppp
ϕ︸ ︷︷ ︸

jpϕ

JX =

ˆ
Σt

jXϕ A2Br2 sin θ dr dθ dϕ
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Fluid couplings

In the slow-rotation approximation and to first order in the lag
δΩ = Ωn − Ωp, the angular momentum of fluid X reads

JX '
´

Σt
nXµ

X B
N (ΩX − ω) r2 sin2 θ d3V

+
´

Σt
nXµ

X εX
B
N (ΩY − ΩX ) r2 sin2 θ d3V

Introducing iX ≡ nXµ
X B

N r2 sin2 θ, we characterize the couplings by

Entrainment:

ĨX ε̃X ≡
ˆ

Σt

iX εX d3V

Lense-Thirring:

ĨX
(
εLTX→X ΩX + εLTY→X ΩY

)
≡
ˆ

Σt

iX ω d3V

where ĨX ≡
´

Σt
iX d3V

JX = ĨX
(
1− εLTX→X − ε̃X

)
ΩX + ĨX

(
ε̃X − εLTY→X

)
ΩY
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Fluid couplings
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Influence of Ω on the couplings
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Fluid couplings

Moments of inertia:

dJX = IXX dΩX + IXY dΩY X ,Y ∈ {n, p}

ÎX = IXX + IXY Î = Î n + Î p
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Fluid couplings

Moments of inertia:

dJX = IXX dΩX + IXY dΩY X ,Y ∈ {n, p}

ÎX = IXX + IXY Î = Î n + Î p

In the slow-rotation approximation (Ωn,Ωp � ΩK), the fluids are mainly
coupled through two non-dissipative mechanisms:

entrainment effect

due to the strong interactions
between nucleons in the core:

pαX = KXXnXuαX +KXY nY uαY

Andreev & Bashkin, SJETP, 1976

relativistic frame-dragging effect

associated with the rotation of
the two fluids, Ωn and Ωp:

gtϕ 6= 0

Carter, Annals of Physics, 1975
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Entrainment VS frame-dragging

Coupling coefficients:

ε̂X = IXY / ÎX

In the slow-rotation approximation:

ε̂p =
ε̃p − εLTn→p

1− εLTp→p − εLTn→p

Remarks:

ε̃X characterizes entrainment,

in Newtonian gravity:

ε̂X = ε̃X
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-0.1
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 1  1.2  1.4  1.6  1.8  2
MG (M⊙)

DDH: ε̂p

 ε~p

  DDHδ: ε̂p

  ε~p

Ωn/2π = Ωp/2π = 11.19 Hz

NB: ε̂n = Î p/Î n × ε̂p ' 0.05× ε̂p
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Where does the vortex unpinning take place?

Glitches have been generally thought to originate from the crust, because:

the core superfluid was expected to be strongly coupled to the crust
Alpar et al., ApJ, 1984

the analysis of glitch data suggested that the superfluid represents a
few percent of the total angular momentum of the star Link et al., PRL,

1999

However, this scenario has been recently challenged:
I considering entrainment effects, the crust does not carry enough

angular momentum Andersson et al., PRL, 2012 & Chamel, PRL, 2013

I a huge glitch has been observed in PSR 2334+61 Alpar, AIP Conf.Proc.,

2011

I the core superfluid could be decoupled from the rest of the star, if
vortices are pinned to flux tubes Gügercinoglu & Alpar, ApJ, 2014

The core superfluid plays a more important role than previously thought.
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Additional physical inputs

So far, we assumed that all the neutrons can decouple from the protons.

only a small fraction of the neutron
fluid could be involved in the glitch:

I n/ I > f ≡ I nc
n / I & G × (1− εnc

n )

we need to account for crustal
entrainment (Bragg scattering):

−14 . εnc
n . 0

G ' 0.016

Ho+, Sc. Adv., 2015

See also: Link+, PRL, 1999 & Lyne+, MNRAS, 2000

Antonelli+, ArXiv, 2016

See also: Chamel, PRC, 2012
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Gravitational wave amplitude

h+(t) = − 3
2 sin

2 i G
Dc4 Q̈ = h0 sin2 i e−

t
τr

h
0

∆Ω / Ω
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B̄ = 10−3,

MG = 1.4 M�,

DDH EoS.

h0 ' 1.0× 10−37
(

D
1 kpc

)−1 (
B̄

10−3

)2 (
Ω

102 rad.s−1

)4 (∆Ω/Ω
10−6

)
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The Vela pulsar

∆Ω/Ω = 10−6, Ωf
n = Ωf

p = 2π × 11.19 Hz

B−

MG (M⊙)

DDH
DDHδ
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τr = 30 s

τr = 10 s

τr = 1 s

τr = 0.1 s

I B̄↗ =⇒ τr↘

I Constraint on B̄:

τr < 30 s ⇒ B̄ > 10−5

I B̄ < 0.5  τr > 0.6 ms

↪→ the glitch event is a
quasi-stationary process
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