Photons at rest around boson stars

Philippe Grandclément

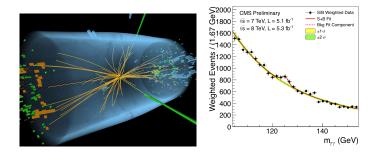
Laboratoire de l'Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris F-92195 Meudon, France

philippe.grandclement@obspm.fr

June 19, 2017

What is a boson star ?

- Localized configuration of a self-gravitating complex scalar field.
- Introduced in the 1960s by Bonazzola, Pacini, Kaup and Ruffini.
- Corresponds to spin-0 particle \implies boson.
- At least one scalar field in nature : *Higgs boson*.



▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Boson star model

• Scalar field has a U(1) symmetry:

 $\Phi \longrightarrow \Phi \exp\left(i\alpha\right).$

• The Lagrangian of the field is

$$\mathcal{L}_M = -rac{1}{2} \left[g^{\mu
u}
abla_\mu ar{\Phi}
abla_
u \Phi + V \left(|\Phi|^2
ight)
ight].$$

V is a potential (for a free field $V = m^2/\hbar^2 \left|\Phi\right|^2$)

• The Lagrangian of gravity is

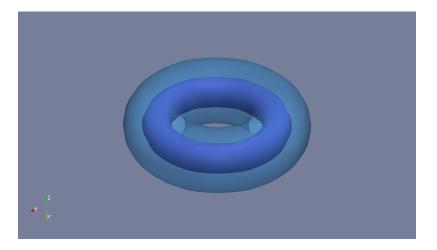
$$\mathcal{L}_g = \frac{1}{16\pi} R$$

The variation of the equation gives the Einstein-Klein-Gordon system.

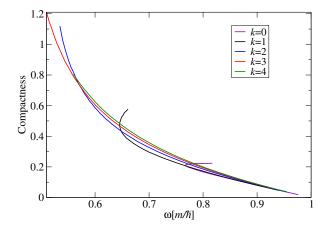
$\Phi = \phi \exp\left[i\left(\omega t - k\varphi\right)\right]$

- $U(1) \Longrightarrow$ the action does not depend on (t, φ) .
- ϕ and the metric fields depend only on (r, θ) .
- k and ω appear as parameters in the equations.
- k is an integer and ω a real number.
- k = 0 corresponds to spherically symmetric configurations.

Field configuration ; k = 2



Compactness



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Effective potential method

Metric in quasi-isotropic coordinates :

 $g_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} = -N^2\mathrm{d}t^2 + A^2\left(\mathrm{d}r^2 + r^2\mathrm{d}\theta^2\right) + B^2r^2\sin^2\theta\left(\mathrm{d}\varphi + \beta^{\varphi}\mathrm{d}t\right)^2$

• Light rings : closed circular orbits of photons.

$$U^{\alpha} = \left(U^t, U^r, 0, U^{\varphi}\right)$$

- Two conserved quantities $U_{\alpha} (\partial_t)^{\alpha} = -E$ and $U_{\alpha} (\partial_{\varphi})^{\alpha} = L$.
- Null geodesics $U_{\alpha}U^{\alpha}=0$ leads to $\left(U^{r}\right)^{2}+V_{\mathrm{eff}}\left(r
 ight)=0$

$$V_{\text{eff}} = \frac{1}{A^2} \left[-\frac{\left(\beta^{\varphi}L + E\right)^2}{N^2} + \frac{L^2}{B^2 r^2} \right]$$

Circular orbits

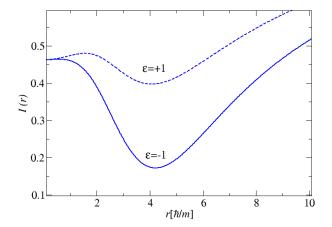
- Circular orbits require $V_{\mathrm{eff}}=0$ and $\partial_r V_{\mathrm{eff}}=0$
- First condition implies

$$\frac{E}{L} = -\beta^{\varphi} + \epsilon \frac{N}{Br} \quad ; \quad \epsilon = \pm 1$$

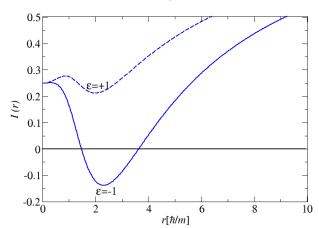
- Contrary to the massive case only the ratio E/L is constrained.
- Second condition reduces to finding the zeros of

$$I(r) = \left(\epsilon \frac{\partial_r \beta^{\varphi}}{NB}\right) r^2 + \left(\frac{\partial_r B}{B^3} - \frac{\partial_r N}{NB^2}\right) r + \frac{1}{B^2}$$

$I\left(r ight)$ without light rings

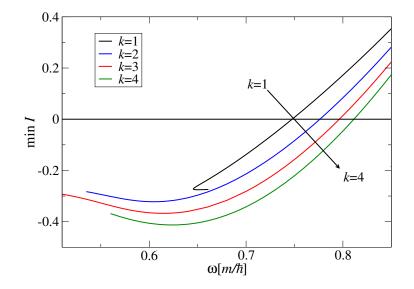


$I\left(r\right)$ with light rings



k=1 ; ω=0.7

Existence of light rings



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Properties

The orbital frequency is given by $\frac{\mathrm{d}\varphi}{\mathrm{d}t} = -\frac{N}{Br} - \beta^{\varphi}$.

Boson star case

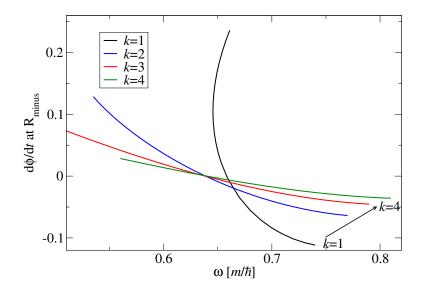
• Two light rights for relativistic enough configurations.

- The outer one is unstable and retrograde.
- The outer one is stable (and changes type).

Black hole case

- Two light rings for Kerr black holes.
- One prograde and one retrograde.
- Both unstable.

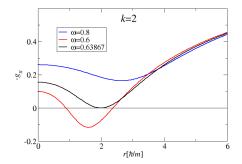
Orbital frequency of the inner light ring



▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q (?)

Light points

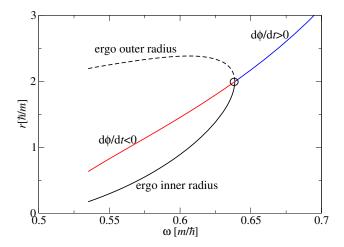
- On each sequence : a photon at rest : $U^{\mu} = (1, 0, 0, 0)$.
- Null condition : $U_{\mu}U^{\mu} = 0 \implies g_{tt} = 0$. The light point lies exactly on the boundary of an ergoregion.
- Additional condition : geodesic equation $\Longrightarrow \partial_r g_{tt} = 0$



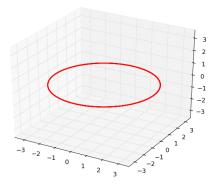
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Light points and ergoregions

The light point lie where an ergoregion just starts to develop



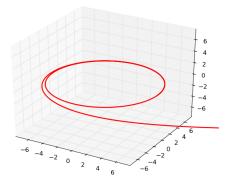
Inner light ring



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Direct integration with Gyoto ; k = 2 and $\omega = 0.7$.

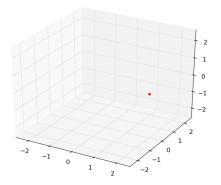
Outer light ring



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Direct integration with Gyoto ; k = 2 and $\omega = 0.7$.

Light point



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Direct integration with Gyoto ; k = 2 and $\omega = 0.6387$.

- Boson stars are indeed very compact.
- Existence of two light rings (one stable).
- On each sequence existence of a single light point, where the photon is at rest.

- Not present in the BH case. Schwarzschild admit an unstable photon at rest trajectory, exactly on the horizon.
- Boson stars are good testbeds for strong relativistic effects.