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What is a boson star ?

@ Localized configuration of a self-gravitating complex scalar field.
@ Introduced in the 1960s by Bonazzola, Pacini, Kaup and Ruffini.
@ Corresponds to spin-0 particle = boson.

@ At least one scalar field in nature :Higgs boson.
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Boson star model

@ Scalar field has a U (1) symmetry:

& — Pexp (i) .

@ The Lagrangian of the field is
1 _
Ly = *i [_(]‘LWV/,,(I)VV@ +V (|<I)‘2>] .

V is a potential (for a free field V = m?2/h?|®|%)
@ The Lagrangian of gravity is

1
L9 = T6x

The variation of the equation gives the Einstein-Klein-Gordon
system.



Ansatz for the field

D = gexp [i (wt — k)]

U (1) = the action does not depend on (t, ¢) .
¢ and the metric fields depend only on (r, ).
k and w appear as parameters in the equations.

k is an integer and w a real number.

k = 0 corresponds to spherically symmetric configurations.




Field configuration ; £k = 2




Compactness
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Effective potential method

@ Metric in quasi-isotropic coordinates :

guwdatda” = —N2dt*+ A% (dr? + r2d6?)+B>r? sin 0 (dp + £°dt)*

@ Light rings : closed circular orbits of photons.

U = (U, U",0,U°%)

e Two conserved quantities U, (9;)" = —FE and U, (9,)" = L.
o Null geodesics U,U® = 0 leads to (U")* + Veg (r) =0
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Circular orbits

@ Circular orbits require Veg = 0 and 0, Vog =0

@ First condition implies
FE N
Z = BP4e— ; e=+1
7 B? + eBr ;€

Contrary to the massive case only the ratio E//L is constrained.

Second condition reduces to finding the zeros of

[ 0:B%N o 0,B  O.N 1
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I (r) without light rings
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I (r) with light rings
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Existence of light rings
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Properties

dp N o
dt ~  Br B

Boson star case

@ Two light rights for relativistic enough configurations.

The orbital frequency is given by

@ The outer one is unstable and retrograde.

@ The outer one is stable (and changes type).
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Black hole case

@ Two light rings for Kerr black holes.

@ One prograde and one retrograde.
@ Both unstable.




Orbital frequency of the inner light ring
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Light points

@ On each sequence : a photon at rest : U = (1,0,0,0).

@ Null condition : U,U" =0 = gy = 0. The light point lies exactly
on the boundary of an ergoregion.

@ Additional condition : geodesic equation = 0,.g;s = 0
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Light points and ergoregions

The light point lie where an ergoregion just starts to develop

3 \
r ergo outer radius _ 1
2+ i
5
E‘ |- 4
~
1+ i
i ergo inner radius |
\ \ \
%.5 0.55 0.6 0.65 0.7

o [m/h)



Direct integration with Gyoto ; k =2 and w = 0.7
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Direct integration with Gyoto ; k =2 and w = 0.7
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Direct integration with Gyoto ; k = 2 and w = 0.6387.
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Last words

Boson stars are indeed very compact.

Existence of two light rings (one stable).

On each sequence existence of a single light point, where the photon
is at rest.

@ Not present in the BH case. Schwarzschild admit an unstable
photon at rest trajectory, exactly on the horizon.

Boson stars are good testbeds for strong relativistic effects.



