

Systèmes de Référence Temps-Espace

STRONTIUM OPTICAL LATTICE CLOCKS

Eva Bookjans GPHYS, July 6th 2016

ATOMIC CLOCKS

HISTORY OF ATOMIC CLOCK ACCURACY

- Microwave clocks: $\omega_0/2\pi \approx 10^{10} \text{Hz}$ $\Rightarrow Q \approx 10^{10}$
- Optical clocks: $\omega_0/2\pi \approx 10^{15} \text{Hz}$ $\Rightarrow Q \approx 10^{15}$

• Optical clocks improve both the accuracy and the frequency stability

OPTICAL LATTICE CLOCKS

- Probe on a narrow optical resonance with an ultra-stable "clock" laser (high Q)
- Trap atoms in an optical lattice potential
 - Lamb-Dicke regime: insensitive to motional effects
 - trap light at magic wavelength: minimal light-shift effects
 - Large number of interrogated atoms (unlike with ion traps): high SNR
- \circ Record stability: a few 10^{-16} / $\tau^{1/2}$
- Record accuracy: a few 10⁻¹⁸

DIFFERENT OPTICAL LATTICE CLOCK SPECIES AT LNE-SYRTE

• Sr lattice clock

- required laser sources are accessible with semi-conductor technology: transportable clocks
- implemented in many laboratories: good candidate for a new SI second

• Hg lattice clock

- requires UV lasers: technically challenging
- low sensitivity to BBR: excellent ultimate accuracy

TWO STRONTIUM OPTICAL LATTICE CLOCKS

ACCURACY BUDGET (SR2)

Main contributions in 10^{-18} :

Effect	Correction	Uncertainty	
Blackbody radiation shift	5208	20	
Quadratic Zeeman shift	1317	12	
Lattice light shift	-30	20	
Lattice spectrum	0	1	
Density shift	0	8	
Line pulling	0	20	
Probe light-shift	0.4	0.4	
AOM phase chirp	-8	8	
Servo error	0	3	
Static charges	0	1.5	
Blackbody radiation oven	0	10	
Background collisions	0	8	
Total	6487.4	41	

Remains the most important contribution

Otherwise limited by statistics

OTHER GROUPS

• <u>JILA</u>: Sr optical lattice clock with 2×10^{-18} accuracy

- <u>NIST</u>: Stability down to 1.6×10^{-18} after 7h of integration between two Yb clocks
- <u>PTB</u>: Sr optical lattice clock with 1.9×10^{-17} accuracy and an ultra-stable laser with a 8×10^{-17} noise floor
- <u>Riken</u>: Comparison between two cryogenic Sr clocks with 7.2×10^{-18} accuracy
- NPL (Sr), NMIJ (Sr,Yb), NICT (Sr), NMI (Sr),...

OPERATIONAL OPTICAL CLOCKS

- Improvement of statistical resolution
 - allow for characterization of systematic effects
- Clock comparisons
- Space clocks, e.g. Pharao/ACES space mission
- Establishment of time scales with optical clocks
- Goal: reach a level of maturity equivalent to the Cs based clock architecture

Jun. 2015: Unattended operation of 31 days, 83% uptime (ITOC JRP)

CLOCK COMPARISONS

• Test the reproducibility of optical lattice clocks

- Creation of a network of optical lattice clocks
 - eventual establishment of time scales with optical clocks
- Determine and track frequency ratios between different atomic species
 - probe of fundamental physics

• Measure offsets and variations of the geo-potential

• applications in geophysics

MEANS OF COMPARISON

• Local/on-site comparisons

- through shared LOs (e.g. clock laser), fiber links, cables
- Stabilized optical fiber links
 - allows for direct optical-to-optical frequency comparisons
 - limited to intercontinental scales

• Satellite links (GPS/TWSFTF)

- allows worldwide comparisons of clocks
- limited resolution (sufficient for microwave clocks but not for optical clocks)

• Pharao/ACES space clock on board the ISS (2018)

• time limited mission (3-5 years?)

LOCAL COMPARISONS AT LNE-SYRTE SR CLOCK VS. MICROWAVE CLOCKS

Stability

- limited by QPN of the microwave fountains
- 10⁻¹⁶ resolution after 12h
- mid 10⁻¹⁷ resolution after 7 days

Accuracy

- limited by accuracy of the fountains
- international agreement

J.Lodewyck *et al.*, Metrologia (2016), arXiv:1605.03878

Absolute frequency of the Sr Clock transition

• SYRTE, PTB, JILA, Tokyo University, NICT, NMIJ, NIM

• Track potential variations of fundamental constants:

$$\frac{d \ln(v_{sr}/v_{cs})}{dt} = -1.6 \times 10^{-16} \pm 6.5 \times 10^{-17} / \text{year}$$

Annual variation of v_{sr}/v_{cs} with relative amplitude : $5.5 \times 10^{-17} \pm 1.8 \times 10^{-17}$

6

LOCAL COMPARISONS AT LNE-SYRTE OPTICAL VS. OPTICAL

o Sr vs. Sr

- First agreement between OLCs
- Detection and characterization of several systematic effects
- R. Le Targat et al., Nat. Commun. (2013)

• Sr vs. Hg

- Direct optical-to-optical frequency measurement (via fiber comb)
- Best reproduced frequency ratio (with RIKEN, Tokyo)
 - R. Tyumenev et al., arXiv:1603.02026

INTERNATIONAL CLOCK COMPARISONS VIA TWSTFT

• Comparison of Sr vs. Yb+ (PTB, NPL) via TWSTFT (ITOC JRP project)

- Statistical resolution only in the mid $10^{\text{-}16}\,\mathrm{even}$ after 7 days of measurements
 - limited by the link
- Frequency ratio compatible with independent local measurements
- 3 weeks comparison achieved in June 2015 with many more clocks!

INTERNATIONAL CLOCK COMPARISONS VIA FIBER LINKS

• Goal: high resolution comparison:

- Direct comparison of optical clocks over a continental scale
- Pure optical comparison, not limited by
 - Microwave transfer methods
 - Microwave oscillators
- Preservation of the frequency stability over long distances

• Implementation:

- Disseminate an IR (1542 nm) "vector" narrow laser through phase-compensated optical fibers
- Optical frequency combs to measure v_{IR}/v_{clock} on both sides

• Challenges:

- Fiber attenuation (e.g. 450 dB for 1500 km) need amplifiers
- Availability of fibers (dark channel or dark fibers)
- Propagation delays (cascaded links)
- Power limits (non-linear effects, disturbance of telecom networks)

$\mathbf{SYRTE} - \mathbf{PTB}$ link via LPL

PTB, LPL and SYRTE established a 1415 km long optical fiber link and performed in 2015 the first direct comparison of optical clocks on a continental scale.

COMPARISON OF TWO REMOTE AND COMPLETELY INDEPENDENT CLOCKS

	PTB	SYRTE	
Loading of the atoms	Blue MOT-Red MOT	Blue+atomic drain	
Lattice light	TiSa pumped by a multimode pump	TiSa pumped by a monomode pump	
BBR Shield from oven	No direct line of sight	Deflected atomic beam	
Lattice orientation	Horizontal	Vertical	
Lattice effect	Retroreflected light	Cavity-formed + PDH lock	
Clock laser	48 cm long cavity, flickering at 8×10^{-17}	10 cm long cavity, flickering at 5×10^{-16}	
Density of atoms	1-2 atoms/site	5-10 atoms/site	
Coils	In-vacuum MOT coils	MOT coils outside of vacuum	
Gravitational redshift	-247.4 (±0.4) ×10 ⁻¹⁷		
Uncertainty budgets	1.9×10 ⁻¹⁷	4.1×10 ⁻¹⁷	

- Only agreement between completely independent optical clocks
- Second to best comparison of optical lattice clocks

2 MEASUREMENT CAMPAIGNS

Statistical uncertainty: 2×10^{-17} after 1 hour SrPTB/SrSYRTE - $1 = (4.7 \pm 5.0) \times 10^{-17}$ C. Lisdat *et al.*, Nat. Commun. (2016)

APPLICATIONS:

• Gravitation:

- Correction for the gravitational redshift:
 - $(-247.4 \pm 0.4) \times 10^{-17}$ corresponding to a 4 cm uncertainty of the (geodetic) height of the clocks
- The next generation of remote clocks comparison will improve our knowledge of the gravitational potential of the Earth

o Fundamental Sciences:

- Precise measurement of frequency ratios
- Search for variation of fundamental constants, detection of dark matter

PERSPECTIVES

• Improved stability and accuracy of OLCs

- 10⁻¹⁹ feasible
- Contribution of optical clocks to international timescales
 - redefinition of the SI second
- Extension of the European fiber network for comparison of optical clocks
 - e.g. link between SYRTE and NPL (already established)

CLOCK ENSEMBLE AT LNE-SYRTE

• 2 Strontium OLCs

- J. Lodewyck, R. Le Targat,
 S. Bilicki, E Bookjans, G. Vallet
- 1 Mercury OLC
 - S. Bize, L. De Sarlo, M. Favier, R. Tyumenev
- Frequency combs
 - Y. Lecoq, R. Le Targat, D. Nicolodi
- 3 atomic fountains
 - Cs, Cs/Rb, and Cs (mobile)
 - J. Guena, P. Rosenbusch, M.Abgrall, D. Rovera, S. Bize,
 - P. Laurent

FIBER LINK COMPARISON

• LPL

- N. Quintin, F. Wiotte, E. Camisard,
 - C. Chardonnet, A. Amy-Klein, O. Lopez

• SYRTE

- C. Shi, F. Stefani, J.-L. Robyr, N. Chiodo, P.Delva, F. Meynadier, M. Lours,
 - G. Santarelli, P.-E. Pottie

• PTB

- C. Lisdat, G. Grosche, S.M.F. Raupach,
 - C. Grebing, A. Al-Masoudi, S. D orscher,
 - S. H afner, A. Koczwara, S. Koke,
 - A. Kuhl, T. Legero, H. Schnatz, U. Sterr

• LUH

• H. Denker, L. Timmen, C. Voigt

Systèmes de Référence Temps-Espace

l l Leibniz o 2 Universität o 4 Hannover