Imaging Sgr A* to constrain its properties

Frédéric Vincent¹ W. Yan, O. Straub, A. Zdziarski, M. Abramowicz²

¹Observatoire de Paris / LESIA, Meudon, France ²Centrum Astronomiczne M. Kopernika, Warsaw, Poland

Frédéric Vincent Imaging Sgr A* to constrain its properties

Credit : Stellarium, Bob King

S-stars cluster (Gillessen+09): size = 1" \approx 0.05 pc

Sgr A*: big mass in small region, SMBH

- Astrometric measurements of close stars \rightarrow central mass
- Sgr A* mass is 4.3 $10^6 M_{\odot}$, S2 at perimelanophrear at 100 AU from Sgr A*, $\theta_{\rm app,Sch} \approx 50 \,\mu as$

Sgr A* quiescent spectrum: not so clear

- Radiatively inefficient accretion flow (RIAF)
- Jet
- Torus-like accretion flow [\rightarrow this talk!]

Sgr A* flares: really unclear

- Sphere of gas orbiting around Sgr A*
- Jet / blob
- MHD instability

o ...

프 🕨 🗉 프

ヨ ト ・

< 🗇 ▶

Question marks at Sgr A*

- Quiescent model of Sgr A* is not so clear (geometry?)
- Flare model is really not clear

New instruments

- At a scale of ≈ 10 µas!
- Quiescent state: → detailed "picture"
 - \rightarrow Event Horizon Telescope
- Flaring state: \rightarrow quick (few min) dynamical monitoring
 - \rightarrow *GRAVITY* (next talk)

< ロ > < 同 > < 臣 > < 臣 > -

< 🗇 > < 🖻 >

Event Horizon Telescope (2008-2020)

Quiescent state imaging

EHT: 15 μas resolution (mm; 10¹¹ Hz)

 \rightarrow Doeleman+08, Nature, 455, 78; Doeleman+09, Astro2010 White Paper

My goal

- Analytic accretion model: torus model for Sgr A*
- Interest: close-future EHT data, 100%-controled model
- Why analytic? Very quick computation: first-order idea
- Higher order: GRMHD

 \rightarrow Vincent+15, A&A, 574, A48

・ 同 ト ・ ヨ ト ・ ヨ ト

Torus cross-section (Abramowicz+78)

The recipe

- ullet ightarrow stationary, axisymmetric
- ullet \to perfect fluid, constant ℓ , circular, polytropic
- $abla_{\mu}T^{\mu}_{
 u}=\mathbf{0}
 ightarrow oldsymbol{p},
 ho$ analytic expressions [Abramowicz+ 78]
- Magnetic field [Komissarov 06] + synchrotron [Wardziński & Zdziarski 00]
- \rightarrow torus model ($a, i, \ell, n_c, T_c, \beta = 0.1, k = 5/3$)

くロト (過) (目) (日)

Density distribution

- Torus much more compact
- No far-distance contribution

・ロット (雪) () () () ()

ъ

Millimeter spectral fitting

- Any (a, i) pair fits
- Probably constraints from mm-IR fits

→ E → < E →</p>

э

(a,i)	λ	$r_{ m out}\left(r_{g} ight)$	$n_c (\mathrm{cm}^{-3})$	T_c (K)	$\chi^2_{ m red}$
$(0,5^{\circ})$	0.35	15	7.7×10^{6}	8.7×10^{11}	0.37
$(0,45^{\circ})$	0.33	15	$8.4 imes 10^6$	$7.5 imes 10^{11}$	0.37
$(0,85^{\circ})$	0.33	15	$5.6 imes 10^6$	2.3×10^{11}	0.25
$(0.95,5^{\circ})$	0.75	11	1×10^7	4.2×10^{11}	0.21
$(0.95, 45^{\circ})$	0.79	13	$7 imes 10^6$	$3.1 imes 10^{11}$	0.21
$(0.95, 85^{\circ})$	0.85	20	$3.5 imes 10^6$	3.1×10^{11}	0.21

Millimeter spectral fitting

- Size of torus well constrained
- Very good fits for all parameters

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Millimeter image constraints

- Kill some accretion flow models
- Constrain inclination
- Constrain spin
- Non-Kerr-BH compact objects?

200

Is Sgr A* a BH?

- Alternative: boson star (no event horizon, no singularity)
- Comparing images with Kerr
- BS: no projected photon ring ; shadow less clear
- Preliminary!

Conclusion

- Big motivation: EHT data coming this year
- Interest of analytic models: quick computation, rather simple
- Goal: (1) constrain accretion flow;
 (2) test the Kerr hypothesis??
- Future of torus model:
 - (1) add a jet; (2) image analysis tools;
 - (3) full spectrum (Comptonization)

-∃=->

Conclusion

- Big motivation: EHT data coming this year
- Interest of analytic models: quick computation, rather simple
- Goal: (1) constrain accretion flow;
 (2) test the Kerr hypothesis??
- Future of torus model:
 - (1) add a jet; (2) full spectrum (Comptonization)
 - (3) image analysis tools

Thanks for your attention!

・聞き ・ヨト ・ヨト