Celestial mechanics in Boson Star spacetime New type of orbits

C. Somé

In collaboration with : E. Gourgoulhon and P. Grandclément LUTH, Meudon

GPhys, Meudon

May, 27th 2014

Outline

Motivations

- GRAVITY
- Tests of General Relativity

2 Boson Star Model

- Field equations
- Numerical solutions
- Astrophysical reality

Timelike geodesics in Mini Boson Star model

- Effective potential
- Zero angular momentum stellar orbits

GRAVITY Tests of General Relativity

New observations with GRAVITY

GRAVITY instrument

- Optical interferometry in the near-infrared
- astrometric precision of 10 µas on each orbit
- Possibility to observe stellar orbits near the Galactic center

Figure: Four 8 m telescopes at VLT (Chile)

GRAVITY Tests of General Relativity

Sgr A* : Kerr Black Hole versus Boson Star

Figure: Image of a Schwarzschild Black Hole

Figure: Rotating Boson Star

< ロ > < 同 > < 三 > < 三 >

Idea : compare the timelike geodesics in those two spacetimes

Field equations

Boson Star : gravitationally bound state of a complex scalar field ϕ which is solution of the following system

• Einstein equations

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi T_{\mu\nu}$$
$$T_{\mu\nu} = \frac{1}{2} \left[\nabla_{\mu}\bar{\phi}\nabla_{\nu}\phi + \nabla_{\mu}\phi\nabla_{\nu}\bar{\phi} \right] - \frac{1}{2}g_{\mu\nu} \left[g^{\gamma\delta}\nabla_{\gamma}\bar{\phi}\nabla_{\delta}\phi + V\left(|\phi|^{2} \right) \right]$$

• Klein Gordon equation

$$\nabla_{\mu}\nabla^{\mu}\phi = \frac{\mathrm{d}V}{\mathrm{d}\mid\phi\mid^{2}}\phi$$

Here we consider "mini" boson stars with $V(|\phi|^2) = \frac{m^2}{\hbar^2} |\phi|^2$

Field equations Numerical solutions Astrophysical reality

Stationary and axisymmetric solution

Assumptions

- Stationarity and axisymmetry for the spacetime metric $g_{lphaeta}$
- \bullet Ansatz for the field ϕ

$$\phi = \phi_0 \left(r, \theta \right) e^{i(\omega t - k\varphi)}$$

with $\phi_0(r, \theta)$ a real function, $\omega \in \mathbb{R}$ and k is an integer.

Solutions found by Kadath using the 3+1 formalism

$$g_{\alpha\beta}dx^{\alpha}dx^{\beta} = -N^{2}dt^{2} + A^{2}\left(dr^{2} + r^{2}d\theta^{2}\right)$$
$$+B^{2}r^{2}\sin^{2}\theta\left(d\varphi + \beta^{\varphi}dt\right)^{2}$$

Field equations Numerical solutions Astrophysical reality

Plots of the boson star field

Figure: Isocontours of $\phi_0(\mathbf{r}, \theta)$ in the plane $\varphi = 0$ for $\omega = 0.8 \ m/\hbar$:

 $\phi = \phi_0(r,\theta)e^{i(\omega t - k\varphi)}$ with k = 1; k = 2; k = 3

Field equations Numerical solutions Astrophysical reality

Could Sgr A* be a Higgs Star ?

Mass of the Higgs boson

 $m_H=125.3\pm0.6~{\rm GeV}$

• Mini-boson star $V(|\phi|^2) = \frac{m^2}{\hbar^2} |\phi|^2$

 $M_{crit} = 3.10^9 {
m kg} \ll M_{SgrA*} = 9.10^{36} {
m ~kg}$

• Boson star
$$V(|\phi|^2) = \frac{m^2}{\hbar^2} |\phi|^2 (1 + 2\pi\Lambda |\phi|^2)$$
 with $\Lambda = 200$:
 $M_{crit} = 8.10^{26} \text{kg} \ll M_{SgrA*}$

• Solitonic boson star $V(|\phi|^2) = \frac{m^2}{\hbar^2} |\phi|^2 \left(1 - \frac{|\phi|^2}{\sigma^2}\right)^2$ with $\sigma = m_H$:

$$M_{crit} = 4.10^{41} \mathrm{kg} \sim M_{SgrA*}$$

< ロ > < 同 > < 三 > < 三 >

Effective potential Zero angular momentum stellar orbits

æ

Effective potential

Equation for r: with V_{eff} (

$$\left(rac{dr}{d au}
ight)^2 = \mathcal{V}_{eff}\left(r,\epsilon,\ell
ight)$$

 $\left(r,\epsilon,\ell
ight) = rac{1}{A^2} \left[rac{1}{N^2} \left(\epsilon + eta^{arphi}\ell
ight)^2 - rac{\ell^2}{B^2r^2} - 1
ight]$
 $\mathcal{V}_{eff} \ge 0 \Rightarrow \epsilon \ge \epsilon_{min}$

Figure: Effective potential profiles for $\omega = 0.8 \ m/\hbar$ and k = 1

Effective potential Zero angular momentum stellar orbits

Zero angular momentum orbits

Figure: Effective potential for $\ell = 0$ for k = 1 and different values of ω

Effective potential Zero angular momentum stellar orbits

Pointy Petal orbits

Using GYOTO ray-tracing code :

Figure: Orbit of a $\ell = 0$ test particle in the equatorial plane of a boson star with $\omega = 0.8 \ m/\hbar$ and k = 1, 2, 3

Effective potential Zero angular momentum stellar orbits

Pointy Petal orbits

Figure: Orbit of a $\ell = 0$ test particle in the equatorial plane of a boson star with k = 2 and $\omega = 0.8 \ m/\hbar$ and 0.75 m/\hbar

Effective potential Zero angular momentum stellar orbits

Conclusion

- In Kerr spacetime, orbits with $\ell = 0$ fall into the Black Hole
- If we observe this type of orbits with GRAVITY... the Galactic Center is definitly a Boson Star !

