Core-collapse supernova simulations

Jérôme Novak (Jerome.Novak@obspm.fr) collaborators: P. Cerdá-Durán, I. Cordero-Carrión, H. Dimmelmeier, M. Oertel, B. Peres, F.Roy & N. Vasset.

> Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot

> > Journée GPhys, May 27th 2014

Core-collapse supernova

Collapse...bounce...

- End of main-sequence life for massive stars ($\gtrsim 8M_{\odot}$).
- Heavier elements with higher temperatures and densities:
 ⇒up to iron, most stable nucleus

Electron capture on nuclei: $p + e^- \rightarrow n + \nu_e$

CORE-COLLAPSE SUPERNOVA

EXPLOSION ?

Janka et al. (2012)

MANY PHYSICS

- Gravitation: General Relativity $\frac{2GM}{Rc^2} \sim 0.1$
- Hydrodynamics: relativistic $\frac{v}{c} \sim 0.3$; importance of convection and other instabilities (SASI).
- Equation of state (EoS): hot matter up to nuclear densities ; plasma, nuclei, nucleons and other particles (hyperons, ...). $T \sim 50 \text{ MeV}$; $\rho_c \sim 2-3 \times 10^{14} \text{ g.cm}^{-3}$.
- neutrino transport in nuclear matter : all ranges of optical depths from opaque to transparent regimes...
- Rotation and magnetic fields poorly known for progenitor stars.
- ...?

 \Rightarrow Need a lot of computer power (exaflop?). Effect of dimensionality (convection / turbulence).

NUMERICAL SIMULATIONS

Development of CoCoNUT code, in collaboration with MPA (Garching) and DAA (Valencia) [Dimmelmeier et al. (2005)]

- First, aimed at determination of gravitational waves from core-collapse.
- Relativistic hydrodynamics, with Godunov (finite-volume shock-capturing) methods.
- Einstein equations in conformal flatness condition (CFC), with spectral methods.
- More development to include realistic EoS, deleptonization and neutrinos. Leakage scheme for the moment \Rightarrow full transport? [Peres et al. (2014)]
- Simulation of black hole formation (failed supernova), with excision (talk by I. Cordero-Carrion).

Models at LUTH

BLACK HOLE FORMATION

Black holes from failed supernovas may represent $\sim 23-90\%$ of compact remnants.

Composition of matter at very high densities poorly known: influence of additional particles: pions, hyperons ?

 \Rightarrow phase transition induces oscillations of the proto-neutron star before its collapse to a black hole [*Peres et al. (2013)*].

Conclusions - Perspectives

- Simulation of core-collapse for (failed) supernovas is an ongoing effort in LUTh (not yet at best international level).
- Very complex problem requiring expertise in astro, hydro, GR, nuclear and particle physics (+ numerics!).
- First 1D-studies on black hole formation and influence of additional particles.

More to come:

- Extension to 2D-studies of hyperon influence ⇒observable through gravitational waves (Virgo)?
- Parallelization of the code \Rightarrow 2D and 3D runs, with enhanced neutrino treatment, to get their signal.
- Determination of observable signals: radioactive ejecta, neutrinos and gravitational waves ⇒constraints on the nuclear/neutrino reactions...