Relativistic orbits in the Galactic center and General Relativity tests with

GRAVInTerferomtrY e e n i n i a t e a i y a i s i s

Marion Grould Advisors Thibaut Paumard & Guy Perrin

GPhys's day May, 27th 2014

Content

The Black hole at the center of the Galaxy

- Central mass estimation
- Apparent size of a Schwarzschild black hole

Test of the no-hair theorem

- The no-hair theorem
- Apparent relativistic orbits model

Einstein ring study with GYOTO

Perspectives

Central mass estimation

The black hole at the center of the Galaxy

Marion Grould (LESIA)

The black hole at the center of the Galaxy

Apparent size of a Schwarzschild black hole

Apparent size of a Schwarzschild black hole seen from the Earth (D \approx 8 kpc): $\Theta_{app} \approx 53 \mu as$ (M87 (D \approx 16,4 Mpc): $\Theta_{app} \approx 21 \mu as$)

GRAVITY astrometric accuracy : 10 µas !

* Vincent, Paumard, Gourgoulhon & Perrin, CQG 28, 225011 (2011)

Marion Grould (LESIA)

→ Test of the no-hair theorem using the Galactic center black hole, SgrA*.

<u>The no-hair theorem :</u> Vitaly L. Ginzburg, Yakov B. Zeldovich et Igor D. Novikov, 1960

Black holes are described by only two parameters, their mass M_{tn} and their spin \bar{a} .

→ Test of the no-hair theorem using the Galactic center black hole, SgrA*.

→ Create an apparent relativistic orbits model.

→ Test of the no-hair theorem using the Galactic center black hole, SgrA*.

→ Create an apparent relativistic orbits model.

→ Use the relativistic orbit tracer GYOTO* (General relativitY Orbit Tracer of Observatoire de Paris).

Orbit of a star around a Kerr black hole $[\bar{a} = 0,995 \text{ and } M_{tn} = 4 \times 10^6 M_{\odot}]$

* Vincent, Paumard, Gourgoulhon & Perrin, CQG 28, 225011 (2011) Marion Grould (LESIA) GPhys's day 2014

Image of a star around a Kerr black hole $[\bar{a} = 1 \text{ et } M_{tn} = 4 \times 10^6 M_{o}]$

Apparent relativistic orbits model

fit parameters to the futures astrometrics data of GRAVITY :

- ***** black hole parameters $[\bar{a}, M_{tn}]$ and its distance from the Earth D,
- ***** position and velocity of the star [(r, θ , ϕ), (v_r, v_{θ}, v_{θ})],

* angles of the observer plane [i, ω , Ω].

→ validate GYOTO in weak deflection limit (photons do not wind around the black hole).

<u>Einstein ring :</u>

Image formed when a source is placed behind a massif object (e.g : black hole).

Einstein ring study with GYOTO

Sereno & De Luca, Phys. Rev. D 74, 123009 (2006) Analytical Kerr black hole lensing in weak deflexion limit :

* angular position of the star needed to form the ring,

Einstein ring study with GYOTO

Sereno & De Luca, Phys. Rev. D 74, 123009 (2006) Analytical Kerr black hole lensing in weak deflexion limit :

- * angular position of the star needed to form the ring,
- * offset of the ring,

Sereno & De Luca, Phys. Rev. D 74, 123009 (2006)

Analytical Kerr black hole lensing in weak deflexion limit :

- angular position of the star needed to form the ring,
- * offset of the ring,
- * angular size of the ring.

- 1. Finish the study of the Einstein ring with GYOTO :
 - \rightarrow measure of the three analytical formulas in Sereno and al. (2006) thanks to GYOTO.
 - → error bars estimation thanks to the noises generated by GYOTO.
- 2. Establishment of the apparent relativistic orbits model :

→ Find one/several method(s) allowing to search the positions of the primary and secondary images :

- measure accuracy << 10 μ as,
- reasonable computational time (fitting of 11 parameters):
 - Where secondary images can be neglicted ?
 - Where gravitational lensing effects can be neglicted ?