

NEUTRON STARS : Astrophysical probes of extreme physics

Debarati Chatterjee Luth, Observatoire de Paris, Meudon

COLLABORATORS: MICAELA OERTEL JEROME NOVAK

- Core Implosion Supernova Explosion Supernova Remnant
- *Massive stars end in core collapse supernova explosions*
- *Neutron stars: compact remnants*
- $M \sim 1-2 M_{solar}$, $R \sim 10 \ km$

Astrophysical Observables

- Period
- Mass M
- Radius R
- Moment of inertia I~MR²
- Gravitational redshift z~M/R
- 🗳 Cooling

MODELING NEUTRON STARS

- Astrophysics
- General Relativity
- *Atomic Physics*
- Nuclear Physics
- *Particle Physics*
- Condensed Matter Physics

Tolman-Oppenheimer-Volkov equations of relativistic hydrostatic equilibrium:

$$\frac{dp}{dr} = -\frac{G}{c^2} \frac{(m+4\pi pr^3)(\epsilon+p)}{r(r-2Gm/c^2)}$$
$$\frac{dm}{dr} = 4\pi \frac{\epsilon}{c^2} r^2$$

Tolman-Oppenheimer-Volkov equations of relativistic hydrostatic equilibrium:

$$\frac{dp}{dr} = -\frac{G}{c^2} \frac{(m+4\pi pr^3)(\epsilon+p)}{r(r-2Gm/c^2)}$$
$$\frac{dm}{dr} = 4\pi \frac{\epsilon}{c^2} r^2$$

Tolman-Oppenheimer-Volkov equations of relativistic hydrostatic equilibrium:

$$\frac{dp}{dr} = -\frac{G}{c^2} \frac{(m+4\pi pr^3)(\epsilon+p)}{r(r-2Gm/c^2)}$$
$$\frac{dm}{dr} = 4\pi \frac{\epsilon}{c^2} r^2$$

Neutron stars in Relativistic binaries

- Post-Keplerian Parameters• Relativistic advance of periastron ώ
- Gravitational redshift and time dilation γ
- Orbital decay in period \dot{P}_b
- Shapiro time delay (range r and shape s)

Neutron stars in Relativistic binaries

- Post-Keplerian Parameters• Relativistic advance of periastron ώ
- Gravitational redshift and time dilation γ
- Orbital decay in period \dot{P}_b
- Shapiro time delay (range r and shape s)

Constraining the EoS

 $M^{max}(theo) > M^{max}(obs)$

Lattimer and Prakash, arXiv:1012.3208

Soft equation of state from heavy-ion data

KaoS experiment, GSI Darmstadt

Hartnack, Oeschler, Aichelin, PRL 2006

Lattimer, GSI, 2010

Sturm et al. (KaoS collaboration), PRL 2001

I. Sagert, C. Sturm, D. C., L.Tolos and J. Schaffner-Bielich, 2012, Phys. Rev. C 85, 065802

Soft equation of state from heavy-ion data

KaoS experiment, GSI Darmstadt

Hartnack, Oeschler, Aichelin, PRL 2006

Lattimer, GSI, 2010

Sturm et al. (KaoS collaboration), PRL 2001

I. Sagert, C. Sturm, D. C., L.Tolos and J. Schaffner-Bielich, 2012, Phys. Rev. C 85, 065802

Soft equation of state from heavy-ion data

KaoS experiment, GSI Darmstadt

Hartnack, Oeschler, Aichelin, PRL 2006

Lattimer, GSI, 2010

Sturm et al. (KaoS collaboration), PRL 2001

I. Sagert, C. Sturm, D. C., L.Tolos and J. Schaffner-Bielich, 2012, Phys. Rev. C 85, 065802

Neutron Star Oscillations : Asteroseismology

Non-radíal Oscillations: f-modes: fundamental g-modes: buoyancy p-modes: pressure R-modes: Coríolís force w-modes: space-tíme

G W detectors

Neutron Star Oscillations : Asteroseismology

Non-radíal Oscillations: f-modes: fundamental g-modes: buoyancy p-modes: pressure R-modes: Coríolís force w-modes: space-tíme

G W detectors

D.C. and D. Bandyopadhyay, Phys. Rev. D 74 (2006) 023003

Magnetars

Known magnetar candidates

Ultra strong magnetic field $B \sim 10^{15} G$

Magnetars

Known magnetar candidates

D.C., M. Oertel and J. Novak, in preparation

Neutron stars are perfect astrophysical laboratories for ..

Composition of cold and dense matter
tests of general relativity
oscillation modes and gravitational waves
physics in ultra strong magnetic fields
....

Neutron stars are perfect astrophysical laboratories for ..

Composition of cold and dense matter
tests of general relativity
oscillation modes and gravitational waves
physics in ultra strong magnetic fields
....

