Observations radio de pulsars binaires relativistes à Nançay

Ismaël Cognard icognard@cnrs-orleans.fr

LPC₂E, CNRS - Université d'Orléans, France Nançay Radio Telescope

I.Cognard - Pulsars binaires relativistes Journées GPhys - Obs Meudon - 27 mai 2014 1/17

An outstanding stability for fast recycled pulsars

A first very short life...

After a birth at \sim 30ms, the pulsar is rapidly slowing down and stops emission after few millions years.

... then eternity !

Those still present in a binary system speed-up by angular momentum transfer, and produce radio waves again, those are

the recycled millisecond pulsars with an outstanding rotational stability !

Alpar et al., Nature 300, 728 (1982)

GPUs based coherent dedispersion at Nançay

Removing the dispersive effect

The ionised ISM produce dispersion best measures need coherent dedispersion where dispersion removed before detection

Diversion of GPUs

Using high performance graphical card (GPU), water-cooled to increase their lifetime, 4 PCs with 8 GTX280 can easily dedisperse bw 512MHz (16Gb/s) in real time

An ultimate precision

Timing uncertainty can be as good as 20ns for a few pulsars.

Analysis of a collection of measured times of arrival (ToAs)

- \rightarrow Having a set of parameters (period, position, etc...),
- \rightarrow computing 'calculated times of arrival',
- \rightarrow fitting the parameters by minimization of the differences (called residuals) between 'measured ToAs' and 'calculated ToAs'
- ightarrow looking at the residuals to find unmodeled effects...

The ultra-stable pulsar PSR J1909-3744 at Nançay

Multi-wavelength observations

Title : Multi-wavelength study of pulsars from radio to TeV photons : a joint long term program with FERMI Ephemeris for ∼120 pulsars are continuously produced to search for high energy pulsations and constrain emission processes

The Pulsar Timing Array (PTA)

Title : Timing of an array of millisecond pulsars (MSPs) and detection of multi-wavelength gravitational waves Around 30 highly stables millisecond precisely timed once a week to search for the signature of gravitational waves (GW) background High precision ToAs from relativistic binaries also used to conduct Tests of Gravitation

 $\sim 1000 \, hr/yr$

 $\sim 2000 \, hr/yr$

PSR J1518+4904, a low mass Neutron Star

PSR J1518+4904

 $\begin{array}{l} \mathsf{P} \,=\, 40.93\,\textrm{ms} \\ \mathsf{DM} \,=\, 11.6114 \,\, \textrm{pc.cm^{-3}} \\ \mathsf{P}_b \,=\, 8.634 \,\, \textrm{days} \\ \mathsf{a.sini} \,=\, 20.04 \,\, \textrm{lt-s}, \, \mathsf{e} \,=\, 0.2494 \end{array}$

Data

a combination of ToAs coming from 4 european and from Green Bank (US) radio telescopes

	Effelsberg ^b	Jodrell Bank	Nançay ^b	Westerbork	Green Bank ^b	All combined
Number of TOAs	71	292	145	126	382	1016
Time span (MJD)	52 481-54 166	49 797-53 925	53 307-54 200	51 389-54 337	49 670-52 895	49 670-54 337
Rms individual data set ^a (μ s)	3.3	10.7	3.3	5.2	8.2	6.0
Observed Frequencies (MHz)	1400	400, 600, 1400	1400	840, 1380, 2300	350, 370, 575, 800	

PSR J1518+4904, a low mass Neutron Star

PSR J1012+5307, indep. limits on \dot{G} and dipole radiation

PSR J1012+5307

P = 5.25ms $DM = 9.0231 \text{ pc.cm}^{-3}$ $P_b = 0.60467 \text{ days}$ a.sini = 0.582 lt-s, e = 1.2×10⁻⁶

Data

a combination of ToAs coming from 4 european radio telescopes

Properties	Effelsberg	Jodrell Bank	Westerbork	Nançay
Number of TOAs	1972	600	234	86
Time span (MJD)	50371-54717	49221-54688	51389-54638	53309-54587
rms of individual set(μs) Observed frequencies (MHz)	2.7 860, 1400, 2700	8.6 410, 606, 1400	2.9 330, 370, 840, 1380	1.9 1400

PSR J1012+5307, indep. limits on G and dipole radiation

a weak but independent limit on tha variation of G and dipole radiation parameter κ_D Lazaridis et al., MNRAS 400, 805 (2009)

the Shapiro delay provides $m_{\rho}=1.24\pm0.11~M_{\odot}$ Ferdman et al., ApJ 711, 764 (2010)

PSR J1614-2230, the $2M_{\odot}$ neutron star system

PSR J1614-2230

 $P = 3.15 \text{ ms}, DM = 34.48 \text{ pc}.\text{ cm}^{-3}$ $P_b = 8.68 \text{d}, m_p = 1.97 \pm 0.04 \text{ M}\odot$

Green Bank + Nançay data

Combining Green Bank (rare and precise) with Nançay (numerous and less precise) provides the first 'good' estimate of the distance $\sim 620\pm40$ pc MCMC estimation (A.Lassus, PhD 2013) important for high energy efficiency

PSR J0737-3039A, the double pulsar

Work still in progress... Data reduction nearly finished $\rightarrow \sim$ 60000 1min ToAs ! paper in preparation with Michael Kramer, MPIfR Bonn

Triple system J0337+1715

Triple system J0337+1715 : test of SEP

Outer Orbit P_{orb}=327days M_{WD} = 0.41M_{Sun}

Triple System

 P_{orb} =1.6days M_{PSR} = 1.44 M_{Sun} M_{WD} = 0.20 M_{Sun}

a stable system

a hierarchical clean system, nearly Keplerian orbits and high precision timing \rightarrow a stable three-body laboratory

an exceptional laboratory

the inner binary is falling in the gravitational field of the outer companion gravitational binding energy of neutron stars is ~ 0.1 of their mass \rightarrow test of the Strong Equivalent Principle

I.Cognard - Pulsars binaires relativistes Journées GPhys - Obs Meudon - 27 mai 2014 15/17

Frequent observations of triple system J0337+1715

Nançay observations

Started end of July 2013

- with a high cadence (1 every \sim 2 5days), already \sim 4000 ToAs
- characterized by a mean uncertainty is ${\sim}2\mu$ s over 2 minutes integrated profiles

M2 student starting to work on it

collaboration with A.Archibald (ASTRON) for SEP test

Conclusion

Present

- a new 512MHz bw pulsar instrumentation (2011)
- a limit on the super-massive black holes binary system GWB
- a successful collaboration with FERMI (tons of new detections : radio, high energy)
- also : magnetar very close the Galactic Center (magnetic field estimation)
- J1518+4904, J1012+5307 and J1802-2124 results

Future

- upgrade of the pulsar instrumentation (512MHz \rightarrow 1.5-2GHz)
- better limit of the GWB (within the collaborations EPTA, IPTA)
- double pulsar J0737-3039A tests
- test of SEP with triple system J0337+1715
 - + new test/results coming from new exciting pulsars to be discovered